forked from 0x2620/pandora
130 lines
4.6 KiB
Python
130 lines
4.6 KiB
Python
# -*- coding: utf-8 -*-
|
|
# vi:si:et:sw=4:sts=4:ts=4
|
|
from __future__ import division
|
|
import os
|
|
|
|
from PIL import Image
|
|
|
|
ZONE_INDEX = []
|
|
for pixel_index in range(64):
|
|
x, y = pixel_index % 8, int(pixel_index / 8)
|
|
ZONE_INDEX.append(int(x / 2) + int(y / 4) * 4)
|
|
|
|
def get_hash(image, mode):
|
|
image_hash = 0
|
|
if mode == 'color':
|
|
# divide the image into 8 zones:
|
|
# 0 0 1 1 2 2 3 3
|
|
# 0 0 1 1 2 2 3 3
|
|
# 0 0 1 1 2 2 3 3
|
|
# 0 0 1 1 2 2 3 3
|
|
# 4 4 5 5 6 6 7 7
|
|
# 4 4 5 5 6 6 7 7
|
|
# 4 4 5 5 6 6 7 7
|
|
# 4 4 5 5 6 6 7 7
|
|
image_data = image.getdata()
|
|
zone_values = []
|
|
for zone_index in range(8):
|
|
zone_values.append([])
|
|
for pixel_index, pixel_value in enumerate(image_data):
|
|
zone_values[ZONE_INDEX[pixel_index]].append(pixel_value)
|
|
for zone_index, pixel_values in enumerate(zone_values):
|
|
# get the mean for each color channel
|
|
mean = list(map(lambda x: int(round(sum(x) / 8)), zip(*pixel_values)))
|
|
# store the mean color of each zone as an 8-bit value:
|
|
# RRRGGGBB
|
|
color_index = sum((
|
|
int(mean[0] / 32) << 5,
|
|
int(mean[1] / 32) << 2,
|
|
int(mean[2] / 64)
|
|
))
|
|
image_hash += color_index * pow(2, zone_index * 8)
|
|
elif mode == 'shape':
|
|
# pixels brighter than the mean register as 1,
|
|
# pixels equal to or darker than the mean as 0
|
|
image_data = image.convert('L').getdata()
|
|
image_mean = sum(image_data) / 64
|
|
for pixel_index, pixel_value in enumerate(image_data):
|
|
if pixel_value > image_mean:
|
|
image_hash += pow(2, pixel_index)
|
|
image_hash = hex(image_hash)[2:].upper()
|
|
if image_hash.endswith('L'):
|
|
image_hash = image_hash[:-1]
|
|
image_hash = '0' * (16 - len(image_hash)) + image_hash
|
|
return image_hash
|
|
|
|
def get_sequences(path, position=0):
|
|
modes = ['color', 'shape']
|
|
sequences = {}
|
|
for mode in modes:
|
|
sequences[mode] = []
|
|
position_start = position
|
|
fps = 25
|
|
file_names = filter(lambda x: 'timelinedata8p' in x, os.listdir(path))
|
|
file_names = sorted(file_names, key=lambda x: int(x[14:-4]))
|
|
file_names = list(map(lambda x: path + x, file_names))
|
|
for file_name in file_names:
|
|
timeline_image = Image.open(file_name)
|
|
timeline_width = timeline_image.size[0]
|
|
for x in range(0, timeline_width, 8):
|
|
frame_image = timeline_image.crop((x, 0, x + 8, 8))
|
|
for mode in modes:
|
|
frame_hash = get_hash(frame_image, mode)
|
|
if position == position_start or frame_hash != sequences[mode][-1]['hash']:
|
|
if position > position_start:
|
|
sequences[mode][-1]['out'] = position
|
|
sequences[mode].append({'in': position, 'hash': frame_hash})
|
|
position += 1 / fps
|
|
for mode in modes:
|
|
if sequences[mode]:
|
|
sequences[mode][-1]['out'] = position
|
|
return sequences, position
|
|
|
|
class DataTimeline():
|
|
fps = 25
|
|
|
|
def __init__(self, path):
|
|
file_names = filter(lambda x: 'timelinedata8p' in x, os.listdir(path))
|
|
file_names = sorted(file_names, key=lambda x: int(x[14:-4]))
|
|
file_names = list(map(lambda x: path + x, file_names))
|
|
self.file_names = file_names
|
|
if file_names:
|
|
self.timeline_image = Image.open(file_names[0])
|
|
self.timeline_width = self.timeline_image.size[0]
|
|
else:
|
|
self.timeline_width = 0
|
|
self.current_tile = 0
|
|
|
|
def get_frame(self, pos):
|
|
frame = int(pos * self.fps)
|
|
tile = int(frame * 8 / self.timeline_width)
|
|
if self.current_tile != tile:
|
|
self.timeline_image = Image.open(self.file_names[tile])
|
|
self.current_tile = tile
|
|
x = frame * 8 - tile * self.timeline_width
|
|
return self.timeline_image.crop((x, 0, x + 8, 8))
|
|
|
|
def get_cut_sequences(stream):
|
|
timeline = DataTimeline(stream.timeline_prefix)
|
|
if not timeline.timeline_width:
|
|
return {}
|
|
cuts = list(stream.cuts) + [stream.duration]
|
|
modes = ['color', 'shape']
|
|
sequences = {}
|
|
for mode in modes:
|
|
sequences[mode] = []
|
|
|
|
position = 0
|
|
for cut in cuts:
|
|
center = position + (cut - position) / 2
|
|
center -= center % 0.04
|
|
frame_image = timeline.get_frame(center)
|
|
for mode in modes:
|
|
frame_hash = get_hash(frame_image, mode)
|
|
sequences[mode].append({
|
|
'hash': frame_hash,
|
|
'in': position,
|
|
'out': cut,
|
|
})
|
|
position = cut
|
|
return sequences
|