# -*- coding: utf-8 -*- # vi:si:et:sw=4:sts=4:ts=4 from __future__ import division import os from PIL import Image ZONE_INDEX = [] for pixel_index in range(64): x, y = pixel_index % 8, int(pixel_index / 8) ZONE_INDEX.append(int(x / 2) + int(y / 4) * 4) def get_hash(image, mode): image_hash = 0 if mode == 'color': # divide the image into 8 zones: # 0 0 1 1 2 2 3 3 # 0 0 1 1 2 2 3 3 # 0 0 1 1 2 2 3 3 # 0 0 1 1 2 2 3 3 # 4 4 5 5 6 6 7 7 # 4 4 5 5 6 6 7 7 # 4 4 5 5 6 6 7 7 # 4 4 5 5 6 6 7 7 image_data = image.getdata() zone_values = [] for zone_index in range(8): zone_values.append([]) for pixel_index, pixel_value in enumerate(image_data): zone_values[ZONE_INDEX[pixel_index]].append(pixel_value) for zone_index, pixel_values in enumerate(zone_values): # get the mean for each color channel mean = list(map(lambda x: int(round(sum(x) / 8)), zip(*pixel_values))) # store the mean color of each zone as an 8-bit value: # RRRGGGBB color_index = sum(( int(mean[0] / 32) << 5, int(mean[1] / 32) << 2, int(mean[2] / 64) )) image_hash += color_index * pow(2, zone_index * 8) elif mode == 'shape': # pixels brighter than the mean register as 1, # pixels equal to or darker than the mean as 0 image_data = image.convert('L').getdata() image_mean = sum(image_data) / 64 for pixel_index, pixel_value in enumerate(image_data): if pixel_value > image_mean: image_hash += pow(2, pixel_index) image_hash = hex(image_hash)[2:].upper() if image_hash.endswith('L'): image_hash = image_hash[:-1] image_hash = '0' * (16 - len(image_hash)) + image_hash return image_hash def get_sequences(path, position=0): modes = ['color', 'shape'] sequences = {} for mode in modes: sequences[mode] = [] position_start = position fps = 25 file_names = filter(lambda x: 'timelinedata8p' in x, os.listdir(path)) file_names = sorted(file_names, key=lambda x: int(x[14:-4])) file_names = list(map(lambda x: path + x, file_names)) for file_name in file_names: timeline_image = Image.open(file_name) timeline_width = timeline_image.size[0] for x in range(0, timeline_width, 8): frame_image = timeline_image.crop((x, 0, x + 8, 8)) for mode in modes: frame_hash = get_hash(frame_image, mode) if position == position_start or frame_hash != sequences[mode][-1]['hash']: if position > position_start: sequences[mode][-1]['out'] = position sequences[mode].append({'in': position, 'hash': frame_hash}) position += 1 / fps for mode in modes: if sequences[mode]: sequences[mode][-1]['out'] = position return sequences, position class DataTimeline(): fps = 25 def __init__(self, path): file_names = filter(lambda x: 'timelinedata8p' in x, os.listdir(path)) file_names = sorted(file_names, key=lambda x: int(x[14:-4])) file_names = list(map(lambda x: path + x, file_names)) self.file_names = file_names if file_names: self.timeline_image = Image.open(file_names[0]) self.timeline_width = self.timeline_image.size[0] else: self.timeline_width = 0 self.current_tile = 0 def get_frame(self, pos): frame = int(pos * self.fps) tile = int(frame * 8 / self.timeline_width) if self.current_tile != tile: self.timeline_image = Image.open(self.file_names[tile]) self.current_tile = tile x = frame * 8 - tile * self.timeline_width return self.timeline_image.crop((x, 0, x + 8, 8)) def get_cut_sequences(stream): timeline = DataTimeline(stream.timeline_prefix) if not timeline.timeline_width: return {} cuts = list(stream.cuts) + [stream.duration] modes = ['color', 'shape'] sequences = {} for mode in modes: sequences[mode] = [] position = 0 for cut in cuts: center = position + (cut - position) / 2 center -= center % 0.04 frame_image = timeline.get_frame(center) for mode in modes: frame_hash = get_hash(frame_image, mode) sequences[mode].append({ 'hash': frame_hash, 'in': position, 'out': cut, }) position = cut return sequences