pandora/pandora/sequence/extract.py

123 lines
4.5 KiB
Python

# -*- coding: utf-8 -*-
# vi:si:et:sw=4:sts=4:ts=4
from __future__ import division
import Image
import os
ZONE_INDEX = []
for pixel_index in range(64):
x, y = pixel_index % 8, int(pixel_index / 8)
ZONE_INDEX.append(int(x / 2) + int(y / 4) * 4)
def get_hash(image, mode):
image_hash = 0
if mode == 'color':
# divide the image into 8 zones:
# 0 0 1 1 2 2 3 3
# 0 0 1 1 2 2 3 3
# 0 0 1 1 2 2 3 3
# 0 0 1 1 2 2 3 3
# 4 4 5 5 6 6 7 7
# 4 4 5 5 6 6 7 7
# 4 4 5 5 6 6 7 7
# 4 4 5 5 6 6 7 7
image_data = image.getdata()
zone_values = []
for zone_index in range(8):
zone_values.append([])
for pixel_index, pixel_value in enumerate(image_data):
zone_values[ZONE_INDEX[pixel_index]].append(pixel_value)
for zone_index, pixel_values in enumerate(zone_values):
# get the mean for each color channel
mean = map(lambda x: int(round(sum(x) / 8)), zip(*pixel_values))
# store the mean color of each zone as an 8-bit value:
# RRRGGGBB
color_index = sum((
int(mean[0] / 32) << 5,
int(mean[1] / 32) << 2,
int(mean[2] / 64)
))
image_hash += color_index * pow(2, zone_index * 8)
elif mode == 'shape':
# pixels brighter than the mean register as 1,
# pixels equal to or darker than the mean as 0
image_data = image.convert('L').getdata()
image_mean = sum(image_data) / 64
for pixel_index, pixel_value in enumerate(image_data):
if pixel_value > image_mean:
image_hash += pow(2, pixel_index)
image_hash = hex(image_hash)[2:].upper()
if image_hash.endswith('L'):
image_hash = image_hash[:-1]
image_hash = '0' * (16 - len(image_hash)) + image_hash
return image_hash
def get_sequences(path, position=0):
modes = ['color', 'shape']
sequences = {}
for mode in modes:
sequences[mode] = []
position_start = position
fps = 25
file_names = filter(lambda x: 'timelinedata8p' in x, os.listdir(path))
file_names = sorted(file_names, key=lambda x: int(x[14:-4]))
file_names = map(lambda x: path + x, file_names)
for file_name in file_names:
timeline_image = Image.open(file_name)
timeline_width = timeline_image.size[0]
for x in range(0, timeline_width, 8):
frame_image = timeline_image.crop((x, 0, x + 8, 8))
for mode in modes:
frame_hash = get_hash(frame_image, mode)
if position == position_start or frame_hash != sequences[mode][-1]['hash']:
if position > position_start:
sequences[mode][-1]['out'] = position
sequences[mode].append({'in': position, 'hash': frame_hash})
position += 1 / fps
for mode in modes:
if sequences[mode]:
sequences[mode][-1]['out'] = position
return sequences, position
class DataTimeline():
fps = 25
def __init__(self, path):
file_names = filter(lambda x: 'timelinedata8p' in x, os.listdir(path))
file_names = sorted(file_names, key=lambda x: int(x[14:-4]))
file_names = map(lambda x: path + x, file_names)
self.file_names = file_names
self.timeline_image = Image.open(file_names[0])
self.timeline_width = self.timeline_image.size[0]
self.current_tile = 0
def get_frame(self, pos):
frame = int(pos * self.fps)
tile = int(frame * 8 / self.timeline_width)
if self.current_tile != tile:
self.timeline_image = Image.open(self.file_names[tile])
self.current_tile = tile
x = frame * 8 - tile * self.timeline_width
return self.timeline_image.crop((x, 0, x + 8, 8))
def get_cut_sequences(stream):
timeline = DataTimeline(stream.timeline_prefix)
cuts = list(stream.cuts) + [stream.duration]
modes = ['color', 'shape']
sequences = {}
for mode in modes:
sequences[mode] = []
position = 0
for cut in cuts:
center = position + (cut - position) / 2
center -= center % 0.04
frame_image = timeline.get_frame(center)
for mode in modes:
frame_hash = get_hash(frame_image, mode)
sequences[mode].append({
'hash': frame_hash,
'in': position,
'out': cut,
})
position = cut
return sequences