forked from 0x2620/pandora
get sequence has for one average frame per cut, fixes #1391
This commit is contained in:
parent
d6d1a08e40
commit
e415eeb45b
2 changed files with 64 additions and 1 deletions
|
@ -3,6 +3,8 @@
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
import Image
|
import Image
|
||||||
import os
|
import os
|
||||||
|
import numpy
|
||||||
|
import math
|
||||||
|
|
||||||
ZONE_INDEX = []
|
ZONE_INDEX = []
|
||||||
for pixel_index in range(64):
|
for pixel_index in range(64):
|
||||||
|
@ -79,3 +81,63 @@ def get_sequences(path, position=0):
|
||||||
sequences[mode][-1]['out'] = position
|
sequences[mode][-1]['out'] = position
|
||||||
return sequences, position
|
return sequences, position
|
||||||
|
|
||||||
|
def get_cut_sequences(stream, position=0):
|
||||||
|
path = stream.timeline_prefix
|
||||||
|
cuts = list(stream.cuts) + [stream.duration]
|
||||||
|
modes = ['color', 'shape']
|
||||||
|
sequences = {}
|
||||||
|
for mode in modes:
|
||||||
|
sequences[mode] = []
|
||||||
|
position_start = position
|
||||||
|
fps = 25
|
||||||
|
file_names = filter(lambda x: 'timelinedata8p' in x, os.listdir(path))
|
||||||
|
file_names = sorted(file_names, key=lambda x: int(x[14:-4]))
|
||||||
|
file_names = map(lambda x: path + x, file_names)
|
||||||
|
|
||||||
|
def add_hash(cut, cut_data):
|
||||||
|
if sequences['color']:
|
||||||
|
start = sequences['color'][-1]['out']
|
||||||
|
else:
|
||||||
|
start = 0
|
||||||
|
end = position
|
||||||
|
frames = int(math.ceil((end - start) * fps))
|
||||||
|
#print 'add', start, end, frames
|
||||||
|
if frames:
|
||||||
|
cut_data /= frames
|
||||||
|
frame_image = Image.new('RGB', (8,8))
|
||||||
|
frame_image.putdata(list(tuple(pixel) for pixel in cut_data))
|
||||||
|
for mode in modes:
|
||||||
|
frame_hash = get_hash(frame_image, mode)
|
||||||
|
if sequences[mode] and sequences[mode][-1]['hash'] == frame_hash:
|
||||||
|
sequences[mode][-1]['out'] = end
|
||||||
|
else:
|
||||||
|
sequences[mode].append({
|
||||||
|
'hash': frame_hash,
|
||||||
|
'in': start,
|
||||||
|
'out': end,
|
||||||
|
})
|
||||||
|
else:
|
||||||
|
print 'fixme', cut_data
|
||||||
|
|
||||||
|
def next_cut():
|
||||||
|
if cuts:
|
||||||
|
cut = cuts.pop(0)
|
||||||
|
else:
|
||||||
|
cut = 0
|
||||||
|
return numpy.array(Image.new('RGB', (8,8)).getdata(), numpy.int64), cut
|
||||||
|
|
||||||
|
cut_data, cut = next_cut()
|
||||||
|
|
||||||
|
for file_name in file_names:
|
||||||
|
timeline_image = Image.open(file_name)
|
||||||
|
timeline_width = timeline_image.size[0]
|
||||||
|
for x in range(0, timeline_width, 8):
|
||||||
|
frame_image = timeline_image.crop((x, 0, x + 8, 8))
|
||||||
|
cut_data += numpy.array(frame_image.getdata(), numpy.int64)
|
||||||
|
position += 1 / fps
|
||||||
|
if cut and position > cut:
|
||||||
|
add_hash(cut, cut_data)
|
||||||
|
cut_data, cut = next_cut()
|
||||||
|
position += 1 / fps
|
||||||
|
add_hash(cut, cut_data)
|
||||||
|
return sequences, position
|
||||||
|
|
|
@ -13,7 +13,8 @@ def get_sequences(itemId):
|
||||||
models.Sequence.objects.filter(sort=i.sort).delete()
|
models.Sequence.objects.filter(sort=i.sort).delete()
|
||||||
position = 0
|
position = 0
|
||||||
for stream in i.streams():
|
for stream in i.streams():
|
||||||
data, position = extract.get_sequences(stream.timeline_prefix, position)
|
#data, position = extract.get_sequences(stream.timeline_prefix, position)
|
||||||
|
data, position = extract.get_cut_sequences(stream, position)
|
||||||
keys = None
|
keys = None
|
||||||
values = []
|
values = []
|
||||||
for mode in data:
|
for mode in data:
|
||||||
|
|
Loading…
Reference in a new issue