507 lines
No EOL
19 KiB
JavaScript
507 lines
No EOL
19 KiB
JavaScript
/*
|
||
The idea (a slight variation of a proposal by
|
||
<a href="http://extendny.com/">Harold Cooper</a>) is to extend the Manhattan
|
||
Grid in all directions, so that every point on Earth can be addressed as
|
||
"Xth Ave & Yth St".<br><br>
|
||
The origin of this coordinate system is the intersection of Zero Ave (a.k.a.
|
||
Avenue A) and Zero St (a.k.a. Houston St). Avenues east of Zero Ave, just as
|
||
Streets south of Zero St, have negative numbers. Broadway, which will split not
|
||
only Manhattan but the entire globe into an eastern and a western hemisphere,
|
||
retains its orientation, but is adjusted slightly so that it originates at the
|
||
intersection of Zero & Zero. From there, Broadway, Zero Avenue and Zero Street
|
||
continue as perfectly straight equatorial lines. All three will intersect once
|
||
more, exactly halfway, in the Indian Ocean, (southwest of Australia), at the
|
||
point furthest from Manhattan.<br><br>
|
||
As subsequent avenues remain exactly parallel to Zero Ave, and subsequent
|
||
streets exactly parallel to Zero St, they form smaller and smaller circles
|
||
around the globe. The northernmost and southernmost streets are small circles
|
||
in Central Asia (east of the Caspian Sea) and the southern Pacific (near Easter
|
||
Island), the westernmost and easternmost avenues small circles in the North
|
||
Pacific (west of Hawaii) and the South Atlantic (near St. Helena). These four
|
||
extreme points are the North Pole, South Pole, West Pole and East Pole of the
|
||
coordinate system.
|
||
*/
|
||
|
||
'use strict';
|
||
|
||
/*
|
||
Include the Image module.
|
||
*/
|
||
Ox.load('Image', function() {
|
||
|
||
/*
|
||
Ox.EARTH_CIRCUMFERENCE (40075016.68557849) is a built-in constant.
|
||
*/
|
||
var C = Ox.EARTH_CIRCUMFERENCE,
|
||
/*
|
||
We need a few points to determine the orientation and spacing of
|
||
avenues and streets.
|
||
*/
|
||
points = {
|
||
/*
|
||
Columbus Circle, the lower western corner of Central Park
|
||
*/
|
||
'8 & 59': {lat: 40.76807,lng: -73.98190},
|
||
/*
|
||
The upper western corner of Central Park, 51 streets up from
|
||
Columbus Circle
|
||
*/
|
||
'8 & 110': {lat: 40.80058, lng: -73.95818},
|
||
/*
|
||
The lower eastern corner of Central Park, 3 avenues east of
|
||
Columbus Circle
|
||
*/
|
||
'5 & 59': {lat: 40.76429, lng: -73.97301},
|
||
},
|
||
/*
|
||
Ox.getBearing returns the bearing, in degrees, from one lat/lng pair to
|
||
another. To make sure that avenues and streets cross at an exact right
|
||
angle, we first calculate the bearing of a line that cuts the upper
|
||
western quadrant of Columbus Circle in half, then add 45 degrees for
|
||
the direction of the avenues and subtract 45 degrees for the direction
|
||
of the streets.
|
||
*/
|
||
bearing = (
|
||
Ox.getBearing(points['8 & 59'], points['8 & 110'])
|
||
+ Ox.getBearing(points['5 & 59'], points['8 & 59'])
|
||
) / 2 + 180,
|
||
bearings = {
|
||
// fixme: Ox.mod ?
|
||
avenues: (bearing + 45) % 360,
|
||
streets: (bearing - 45) % 360
|
||
},
|
||
/*
|
||
Ox.getDistance returns the distance, in meters, from one lat/lng pair
|
||
to another. We use this to determine the spacing between avenues and
|
||
between streets. The result is 287 meters between Avenues and 81 meters
|
||
between streets, which is not too far from the actual
|
||
<a href="http://en.wikipedia.org/wiki/Commissioners'_Plan_of_1811">Plan</a>
|
||
of the grid.
|
||
*/
|
||
distances = {
|
||
avenues: Ox.getDistance(points['8 & 59'], points['5 & 59']) / 3,
|
||
streets: Ox.getDistance(points['8 & 59'], points['8 & 110']) / 51
|
||
},
|
||
/*
|
||
The number of avenues and streets, in each direction, is a quarter of
|
||
the Earth's circumference divided by the respective spacing. The result
|
||
is 34,966 avenues and 123,582 streets.
|
||
*/
|
||
numbers = Ox.map(distances, function(distance) {
|
||
return C / 4 / distance;
|
||
}),
|
||
colors = {
|
||
broadway: 'rgba(0, 0, 255, 0.5)',
|
||
avenues: 'rgba(0, 255, 0, 0.5)',
|
||
streets: 'rgba(255, 0, 0, 0.5)'
|
||
},
|
||
precision = 8,
|
||
step = 10000,
|
||
$body = Ox.$('body'),
|
||
$post = Ox.$('<div>').addClass('post').hide().appendTo($body),
|
||
$sign = Ox.$('<div>').addClass('sign').hide().appendTo($body),
|
||
$images = [],
|
||
lines, mapSize, poles;
|
||
/*
|
||
Ox.getPoint takes a lat/lng pair, a distance and a bearing, and returns the
|
||
resulting point. We use this to construct the origin of the coordinate
|
||
system, by moving Columbus Circle by minus 59 streets in the direction of
|
||
the avenues and then by minus 8 avenues in the direction of the streets.
|
||
The resulting point is on Stanton St between Norfolk St and Suffolk St,
|
||
which is pretty close to where we expected it to be.
|
||
*/
|
||
points['0 & 0'] = Ox.getPoint(
|
||
Ox.getPoint(
|
||
points['8 & 59'],
|
||
-59 * distances.streets,
|
||
bearings.avenues
|
||
),
|
||
-8 * distances.avenues,
|
||
bearings.streets
|
||
);
|
||
/*
|
||
The second intersection of Zero Avenue, Zero Street and Broadway is half of
|
||
the Earth's circumference away from the first one, in any direction.
|
||
*/
|
||
points['-0 & -0'] = Ox.getPoint(
|
||
points['0 & 0'],
|
||
Ox.EARTH_CIRCUMFERENCE / 2,
|
||
0
|
||
);
|
||
/*
|
||
Now that we have constructed the origin, we can calculate the bearing of
|
||
Broadway, which runs from Zero & Zero through Columbus Circle.
|
||
*/
|
||
bearings.broadway = Ox.getBearing(points['0 & 0'], points['8 & 59']),
|
||
/*
|
||
Also, we can construct the poles, each of which is a quarter of Earth's
|
||
circumference away from Zero & Zero.
|
||
*/
|
||
poles = {
|
||
north: Ox.getPoint(points['0 & 0'], C / 4, bearings.avenues),
|
||
south: Ox.getPoint(points['0 & 0'], -C / 4, bearings.avenues),
|
||
west: Ox.getPoint(points['0 & 0'], C / 4, bearings.streets),
|
||
east: Ox.getPoint(points['0 & 0'], -C / 4, bearings.streets),
|
||
/*
|
||
Broadway has two poles as well, and constructing them will make drawing
|
||
easier. Ox.mod is the modulo function. Unlike <code>-90 % 360</code>,
|
||
which in JavaScript is -90, Ox.mod(-90, 360) returns 270.
|
||
*/
|
||
westBroadway: Ox.getPoint(
|
||
points['0 & 0'],
|
||
C / 4,
|
||
Ox.mod(bearings.broadway - 90, 360)
|
||
),
|
||
eastBroadway: Ox.getPoint(
|
||
points['0 & 0'],
|
||
C / 4,
|
||
Ox.mod(bearings.broadway + 90, 360)
|
||
)
|
||
};
|
||
/*
|
||
Now we calculate circles for Broadway, Avenues and Streets. Ox.getCircle
|
||
returns an array of lat/lng pairs that form a circle around a given point,
|
||
with a given radius and a given precision, so that the circle will have
|
||
<code>Math.pow(2, precision)</code> segments.
|
||
*/
|
||
lines = {
|
||
/*
|
||
Since there is only one Broadway, this is an array with just one circle
|
||
that runs around one of the Broadway Poles, at a distance of a quarter
|
||
of the Earth's circumference.
|
||
*/
|
||
broadway: [Ox.getCircle(poles.westBroadway, C / 4, precision)],
|
||
/*
|
||
For each 10,000th avenue, we compute a circle around the East Pole.
|
||
From there, avenues range from -34,966th to 34,966th, so we start at a
|
||
distance of 966 avenues from the pole, stop once the distance is half
|
||
of the Earth's circumference (the West Pole), and in each step increase
|
||
the distance by 10,000 avenues.
|
||
*/
|
||
avenues: Ox.range(
|
||
distances.avenues * (numbers.avenues % step),
|
||
C / 2,
|
||
distances.avenues * step
|
||
).map(function(distance) {
|
||
return Ox.getCircle(poles.east, distance, precision);
|
||
}),
|
||
/*
|
||
Then we do the same for streets, starting at the South Pole.
|
||
*/
|
||
streets: Ox.range(
|
||
distances.streets * (numbers.streets % step),
|
||
C / 2,
|
||
distances.streets * step
|
||
).map(function(distance) {
|
||
return Ox.getCircle(poles.south, distance, precision);
|
||
})
|
||
};
|
||
/*
|
||
Print our data to the console.
|
||
*/
|
||
Ox.print(JSON.stringify({
|
||
bearings: bearings,
|
||
distances: distances,
|
||
numbers: numbers,
|
||
points: points,
|
||
poles: poles
|
||
}, null, ' '));
|
||
|
||
/*
|
||
Before we start drawing, we define a few helper functions.
|
||
<code>getXYByLatLng</code> returns screen coordinates for a given point.
|
||
We use Ox.getXYByLatLng, which takes a lat/lng pair and returns its x/y
|
||
position on a 1×1 Mercator position, with <code>{x: 0, y: 0}</code> at the
|
||
bottom left and <code>{x: 1, y: 1}</code> at the top right.
|
||
*/
|
||
function getXYByLatLng(point) {
|
||
return Ox.map(Ox.getXYByLatLng(point), function(v) {
|
||
return v * mapSize;
|
||
});
|
||
}
|
||
|
||
/*
|
||
<code>getLatLngByXY</code> is the inverse of the above, just like
|
||
Ox.getLatLngByXY.
|
||
*/
|
||
function getLatLngByXY(xy) {
|
||
return Ox.getLatLngByXY(Ox.map(xy, function(v) {
|
||
return v / mapSize;
|
||
}));
|
||
}
|
||
|
||
/*
|
||
<code>getASByLatLng</code> takes lat/lng and returns avenue/street. To
|
||
compute the avenue, we subtract the point's distance from the West Pole, in
|
||
avenues, from the total number of avenues. To compute the street, we
|
||
subtract the point's distance from the North Pole, in avenues, from the
|
||
total number of streets. We also return the bearing of the avenues at this
|
||
point (which form a right angle with the line from the point to the West
|
||
Pole), the bearing of the streets (at a right angle with the line to the
|
||
North Pole) and the hemisphere (east or west of Broadway).
|
||
*/
|
||
function getASByLatLng(point) {
|
||
var n = Ox.getDistance(point, poles.north),
|
||
w = Ox.getDistance(point, poles.west);
|
||
return {
|
||
avenue: numbers.avenues - w / distances.avenues,
|
||
street: numbers.streets - n / distances.streets,
|
||
bearings: {
|
||
avenues: Ox.mod(Ox.getBearing(point, poles.west) + (
|
||
w < C / 4 ? -90 : 90
|
||
), 360),
|
||
streets: Ox.mod(Ox.getBearing(point, poles.north) + (
|
||
n < C / 4 ? -90 : 90
|
||
), 360)
|
||
},
|
||
hemisphere: Ox.getDistance(point, poles.eastBroadway) < C / 4
|
||
? 'E' : 'W'
|
||
};
|
||
}
|
||
|
||
/*
|
||
<code>getASByXY</code> returns avenue and street at the given screen
|
||
coordinates.
|
||
*/
|
||
function getASByXY(xy) {
|
||
return getASByLatLng(getLatLngByXY(xy));
|
||
}
|
||
|
||
/*
|
||
<code>drawPath</code> draws a path of lat/lng pairs on an image. For each
|
||
path segment, we have to check if it crosses the eastern or western edge of
|
||
the map that splits the Pacific Ocean. Note that our test (a segment
|
||
crosses the edge if it spans more than 180 degrees longitude) is obviously
|
||
incorrect, but works in our case, since all segments are sufficiently
|
||
short.
|
||
*/
|
||
function drawPath(image, path, options) {
|
||
var n, parts = [[]];
|
||
/*
|
||
...
|
||
*/
|
||
path.push(path[0]);
|
||
n = path.length;
|
||
Ox.loop(n, function(i) {
|
||
var lat, lng, split;
|
||
/*
|
||
Append each point to the last part.
|
||
*/
|
||
Ox.last(parts).push(path[i]);
|
||
if (Math.abs(path[i].lng - path[(i + 1) % n].lng) > 180) {
|
||
/*
|
||
If the next line crosses the edge, get the lat/lng of the
|
||
points where the line leaves and enters the map.
|
||
*/
|
||
lat = Ox.getCenter(path[i], path[i + 1]).lat;
|
||
lng = path[i].lng < 0 ? [-180, 180] : [180, -180];
|
||
/*
|
||
Append the first point to the last part and create a new part
|
||
with the second point.
|
||
*/
|
||
Ox.last(parts).push({lat: lat, lng: lng[0]});
|
||
parts.push([{lat: lat, lng: lng[1]}]);
|
||
}
|
||
});
|
||
/*
|
||
We draw each part, translating lat/lng to [x, y].
|
||
*/
|
||
parts.forEach(function(part) {
|
||
image.drawPath(part.map(function(point) {
|
||
var xy = getXYByLatLng(point);
|
||
return [xy.x, xy.y];
|
||
}), options);
|
||
});
|
||
}
|
||
|
||
/*
|
||
...
|
||
*/
|
||
Ox.Image('jpg/earth1024.jpg', function(image) {
|
||
|
||
mapSize = image.getSize().width;
|
||
drawPath(image, Ox.getCircle(points['0 & 0'], C / 4, 8), {
|
||
color: 'rgba(255, 255, 255, 0.25)'
|
||
});
|
||
['streets', 'avenues', 'broadway'].forEach(function(type) {
|
||
lines[type].forEach(function(line, i) {
|
||
drawPath(image, line, {
|
||
color: colors[type],
|
||
width: i == lines[type].length / 2 - 0.5 ? 2 : 1
|
||
});
|
||
});
|
||
});
|
||
|
||
$body.css({
|
||
minWidth: mapSize + 'px',
|
||
height: mapSize + 'px',
|
||
backgroundImage: 'url(' + image.src() + ')'
|
||
})
|
||
.bind({
|
||
click: click,
|
||
mouseover: mouseover,
|
||
mousemove: mousemove,
|
||
mouseout: mouseout
|
||
});
|
||
|
||
[
|
||
{point: points['0 & 0'], title: 'Manhattan', z: 12},
|
||
{point: {lat: 48.87377, lng: 2.29505}, title: 'Paris', z: 13},
|
||
{point: poles.north, title: 'Uzbekistan', z: 14}
|
||
].forEach(function(marker, i) {
|
||
var as = getASByLatLng(marker.point),
|
||
g = {s: 256, v: 108, z: marker.z},
|
||
xy = getXYByLatLng(marker.point);
|
||
Ox.print(as)
|
||
Ox.extend(g, Ox.map(Ox.getXYByLatLng(marker.point), function(v) {
|
||
return Math.floor(v * Math.pow(2, g.z));
|
||
}));
|
||
Ox.$('<div>')
|
||
.addClass('marker')
|
||
.css({
|
||
left: xy.x - 4 + 'px',
|
||
top: xy.y - 4 + 'px'
|
||
})
|
||
.bind({
|
||
click: function() {
|
||
$images.forEach(function($image) {
|
||
$image.hide();
|
||
});
|
||
$images[i].show();
|
||
}
|
||
})
|
||
.appendTo($body);
|
||
Ox.Image(Ox.formatString(
|
||
'jpg/v={v}&x={x}&y={y}&z={z}.jpg', g
|
||
), function(image) {
|
||
if (marker.title == 'Uzbekistan') {
|
||
Ox.range(
|
||
distances.streets * (numbers.streets % 1),
|
||
2000,
|
||
distances.streets
|
||
).forEach(function(distance) {
|
||
var circle = mapLine(Ox.getCircle(
|
||
poles.north, distance, precision
|
||
), g);
|
||
image.drawPath(circle, {
|
||
close: true,
|
||
color: colors.streets
|
||
});
|
||
});
|
||
} else {
|
||
Ox.loop(-200, 200, function(street) {
|
||
var line = getLine(g, marker.point, as, 'streets', street);
|
||
image.drawPath(line, {
|
||
color: colors.streets,
|
||
width: marker.title == 'Paris' || street ? 1 : 2
|
||
});
|
||
});
|
||
}
|
||
Ox.loop(-20, 20, function(avenue) {
|
||
var line = getLine(g, marker.point, as, 'avenues', avenue);
|
||
image.drawPath(line, {
|
||
color: colors.avenues,
|
||
width: marker.title == 'Paris' || avenue ? 1 : 2
|
||
});
|
||
});
|
||
if (marker.title == 'Manhattan') {
|
||
var line = mapLine(Ox.getLine(
|
||
Ox.getPoint(marker.point, -10000, bearings.broadway),
|
||
Ox.getPoint(marker.point, 10000, bearings.broadway),
|
||
1
|
||
), g);
|
||
image.drawPath(line, {color: 'rgba(0, 0, 255, 0.5)', width: 2});
|
||
}
|
||
['black', 'white'].forEach(function(color, i) {
|
||
image.drawText(marker.title, [240 - i, 240 - i], {
|
||
color: color,
|
||
font: 'bold 16px Lucida Grande, sans-serif',
|
||
textAlign: 'right'
|
||
});
|
||
})
|
||
$images[i] = Ox.$('<img>')
|
||
.attr({src: image.src()})
|
||
.hide()
|
||
.appendTo($body);
|
||
});
|
||
});
|
||
|
||
});
|
||
|
||
function getLine(g, point, as, type, i) {
|
||
point = Ox.getPoint(
|
||
point,
|
||
i * distances[type],
|
||
as.bearings[type == 'avenues' ? 'streets' : 'avenues']
|
||
);
|
||
return mapLine(Ox.getLine(
|
||
Ox.getPoint(point, -10000, as.bearings[type]),
|
||
Ox.getPoint(point, 10000, as.bearings[type]),
|
||
1
|
||
), g);
|
||
}
|
||
|
||
function mapLine(line, g) {
|
||
return line.map(function(point) {
|
||
var xy = Ox.map(Ox.getXYByLatLng(point), function(value, key) {
|
||
return (value * Math.pow(2, g.z) - g[key]) * g.s;
|
||
});
|
||
return [xy.x, xy.y];
|
||
});
|
||
}
|
||
|
||
function click(e) {
|
||
if (e.target.className != 'marker') {
|
||
$images.forEach(function($image) {
|
||
$image.hide();
|
||
});
|
||
}
|
||
}
|
||
|
||
function mouseover() {
|
||
$post.show();
|
||
$sign.show();
|
||
}
|
||
|
||
function mousemove(e) {
|
||
if (e.target.tagName == 'IMG') {
|
||
mouseout();
|
||
return;
|
||
}
|
||
var left = window.scrollX,
|
||
right = left + window.innerWidth,
|
||
top = window.scrollY,
|
||
xy = {x: left + e.clientX, y: top + e.clientY},
|
||
latlng = getLatLngByXY(xy),
|
||
as = getASByXY(xy),
|
||
width, height, invertX, invertY;
|
||
$sign.html(
|
||
Ox.formatNumber(as.avenue, 0) + 'th Av & '
|
||
+ as.hemisphere + ' '
|
||
+ Ox.formatNumber(as.street, 0) + 'th St'
|
||
+ '<div class="latlng">'
|
||
+ Ox.formatDegrees(latlng.lat, 'lat') + ' / '
|
||
+ Ox.formatDegrees(((latlng.lng + 180) % 360) - 180, 'lng')
|
||
+ '</div>'
|
||
)
|
||
width = $sign.width();
|
||
height = $sign.height();
|
||
invertX = xy.x + width > right;
|
||
invertY = xy.y - height - 32 < top;
|
||
$sign.css({
|
||
left: xy.x + (invertX ? 1 - width : -1) + 'px',
|
||
top: xy.y + (invertY ? 32 : -32 - height) + 'px'
|
||
});
|
||
$post.css({
|
||
left: xy.x - 1 + 'px',
|
||
top: xy.y + (invertY ? 0 : -32 - height) + 'px',
|
||
height: $sign.height() + 32 + 'px'
|
||
});
|
||
}
|
||
|
||
function mouseout() {
|
||
$post.hide();
|
||
$sign.hide();
|
||
}
|
||
|
||
}); |