85 lines
2.3 KiB
Python
85 lines
2.3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
"""
|
|
N queens problem.
|
|
|
|
The (well-known) problem is due to Niklaus Wirth.
|
|
|
|
This solution is inspired by Dijkstra (Structured Programming). It is
|
|
a classic recursive backtracking approach.
|
|
"""
|
|
|
|
N = 8 # Default; command line overrides
|
|
|
|
class Queens:
|
|
|
|
def __init__(self, n=N):
|
|
self.n = n
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
n = self.n
|
|
self.y = [None] * n # Where is the queen in column x
|
|
self.row = [0] * n # Is row[y] safe?
|
|
self.up = [0] * (2*n-1) # Is upward diagonal[x-y] safe?
|
|
self.down = [0] * (2*n-1) # Is downward diagonal[x+y] safe?
|
|
self.nfound = 0 # Instrumentation
|
|
|
|
def solve(self, x=0): # Recursive solver
|
|
for y in range(self.n):
|
|
if self.safe(x, y):
|
|
self.place(x, y)
|
|
if x+1 == self.n:
|
|
self.display()
|
|
else:
|
|
self.solve(x+1)
|
|
self.remove(x, y)
|
|
|
|
def safe(self, x, y):
|
|
return not self.row[y] and not self.up[x-y] and not self.down[x+y]
|
|
|
|
def place(self, x, y):
|
|
self.y[x] = y
|
|
self.row[y] = 1
|
|
self.up[x-y] = 1
|
|
self.down[x+y] = 1
|
|
|
|
def remove(self, x, y):
|
|
self.y[x] = None
|
|
self.row[y] = 0
|
|
self.up[x-y] = 0
|
|
self.down[x+y] = 0
|
|
|
|
silent = 0 # If true, count solutions only
|
|
|
|
def display(self):
|
|
self.nfound = self.nfound + 1
|
|
if self.silent:
|
|
return
|
|
print('+-' + '--'*self.n + '+')
|
|
for y in range(self.n-1, -1, -1):
|
|
print('|', end=' ')
|
|
for x in range(self.n):
|
|
if self.y[x] == y:
|
|
print("Q", end=' ')
|
|
else:
|
|
print(".", end=' ')
|
|
print('|')
|
|
print('+-' + '--'*self.n + '+')
|
|
|
|
def main():
|
|
import sys
|
|
silent = 0
|
|
n = N
|
|
if sys.argv[1:2] == ['-n']:
|
|
silent = 1
|
|
del sys.argv[1]
|
|
if sys.argv[1:]:
|
|
n = int(sys.argv[1])
|
|
q = Queens(n)
|
|
q.silent = silent
|
|
q.solve()
|
|
print("Found", q.nfound, "solutions.")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|