# orm/state.py # Copyright (C) 2005-2015 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Defines instrumentation of instances. This module is usually not directly visible to user applications, but defines a large part of the ORM's interactivity. """ import weakref from .. import util from . import exc as orm_exc, interfaces from .path_registry import PathRegistry from .base import PASSIVE_NO_RESULT, SQL_OK, NEVER_SET, ATTR_WAS_SET, \ NO_VALUE, PASSIVE_NO_INITIALIZE, INIT_OK, PASSIVE_OFF from . import base class InstanceState(interfaces.InspectionAttr): """tracks state information at the instance level. The :class:`.InstanceState` is a key object used by the SQLAlchemy ORM in order to track the state of an object; it is created the moment an object is instantiated, typically as a result of :term:`instrumentation` which SQLAlchemy applies to the ``__init__()`` method of the class. :class:`.InstanceState` is also a semi-public object, available for runtime inspection as to the state of a mapped instance, including information such as its current status within a particular :class:`.Session` and details about data on individual attributes. The public API in order to acquire a :class:`.InstanceState` object is to use the :func:`.inspect` system:: >>> from sqlalchemy import inspect >>> insp = inspect(some_mapped_object) .. seealso:: :ref:`core_inspection_toplevel` """ session_id = None key = None runid = None load_options = util.EMPTY_SET load_path = () insert_order = None _strong_obj = None modified = False expired = False deleted = False _load_pending = False is_instance = True callables = () """A namespace where a per-state loader callable can be associated. In SQLAlchemy 1.0, this is only used for lazy loaders / deferred loaders that were set up via query option. Previously, callables was used also to indicate expired attributes by storing a link to the InstanceState itself in this dictionary. This role is now handled by the expired_attributes set. """ def __init__(self, obj, manager): self.class_ = obj.__class__ self.manager = manager self.obj = weakref.ref(obj, self._cleanup) self.committed_state = {} self.expired_attributes = set() expired_attributes = None """The set of keys which are 'expired' to be loaded by the manager's deferred scalar loader, assuming no pending changes. see also the ``unmodified`` collection which is intersected against this set when a refresh operation occurs.""" @util.memoized_property def attrs(self): """Return a namespace representing each attribute on the mapped object, including its current value and history. The returned object is an instance of :class:`.AttributeState`. This object allows inspection of the current data within an attribute as well as attribute history since the last flush. """ return util.ImmutableProperties( dict( (key, AttributeState(self, key)) for key in self.manager ) ) @property def transient(self): """Return true if the object is :term:`transient`. .. seealso:: :ref:`session_object_states` """ return self.key is None and \ not self._attached @property def pending(self): """Return true if the object is :term:`pending`. .. seealso:: :ref:`session_object_states` """ return self.key is None and \ self._attached @property def persistent(self): """Return true if the object is :term:`persistent`. .. seealso:: :ref:`session_object_states` """ return self.key is not None and \ self._attached @property def detached(self): """Return true if the object is :term:`detached`. .. seealso:: :ref:`session_object_states` """ return self.key is not None and \ not self._attached @property @util.dependencies("sqlalchemy.orm.session") def _attached(self, sessionlib): return self.session_id is not None and \ self.session_id in sessionlib._sessions @property @util.dependencies("sqlalchemy.orm.session") def session(self, sessionlib): """Return the owning :class:`.Session` for this instance, or ``None`` if none available. Note that the result here can in some cases be *different* from that of ``obj in session``; an object that's been deleted will report as not ``in session``, however if the transaction is still in progress, this attribute will still refer to that session. Only when the transaction is completed does the object become fully detached under normal circumstances. """ return sessionlib._state_session(self) @property def object(self): """Return the mapped object represented by this :class:`.InstanceState`.""" return self.obj() @property def identity(self): """Return the mapped identity of the mapped object. This is the primary key identity as persisted by the ORM which can always be passed directly to :meth:`.Query.get`. Returns ``None`` if the object has no primary key identity. .. note:: An object which is transient or pending does **not** have a mapped identity until it is flushed, even if its attributes include primary key values. """ if self.key is None: return None else: return self.key[1] @property def identity_key(self): """Return the identity key for the mapped object. This is the key used to locate the object within the :attr:`.Session.identity_map` mapping. It contains the identity as returned by :attr:`.identity` within it. """ # TODO: just change .key to .identity_key across # the board ? probably return self.key @util.memoized_property def parents(self): return {} @util.memoized_property def _pending_mutations(self): return {} @util.memoized_property def mapper(self): """Return the :class:`.Mapper` used for this mapepd object.""" return self.manager.mapper @property def has_identity(self): """Return ``True`` if this object has an identity key. This should always have the same value as the expression ``state.persistent or state.detached``. """ return bool(self.key) def _detach(self): self.session_id = self._strong_obj = None def _dispose(self): self._detach() del self.obj def _cleanup(self, ref): """Weakref callback cleanup. This callable cleans out the state when it is being garbage collected. this _cleanup **assumes** that there are no strong refs to us! Will not work otherwise! """ instance_dict = self._instance_dict() if instance_dict is not None: instance_dict._fast_discard(self) del self._instance_dict # we can't possibly be in instance_dict._modified # b.c. this is weakref cleanup only, that set # is strong referencing! # assert self not in instance_dict._modified self.session_id = self._strong_obj = None del self.obj def obj(self): return None @property def dict(self): """Return the instance dict used by the object. Under normal circumstances, this is always synonymous with the ``__dict__`` attribute of the mapped object, unless an alternative instrumentation system has been configured. In the case that the actual object has been garbage collected, this accessor returns a blank dictionary. """ o = self.obj() if o is not None: return base.instance_dict(o) else: return {} def _initialize_instance(*mixed, **kwargs): self, instance, args = mixed[0], mixed[1], mixed[2:] # noqa manager = self.manager manager.dispatch.init(self, args, kwargs) try: return manager.original_init(*mixed[1:], **kwargs) except: with util.safe_reraise(): manager.dispatch.init_failure(self, args, kwargs) def get_history(self, key, passive): return self.manager[key].impl.get_history(self, self.dict, passive) def get_impl(self, key): return self.manager[key].impl def _get_pending_mutation(self, key): if key not in self._pending_mutations: self._pending_mutations[key] = PendingCollection() return self._pending_mutations[key] def __getstate__(self): state_dict = {'instance': self.obj()} state_dict.update( (k, self.__dict__[k]) for k in ( 'committed_state', '_pending_mutations', 'modified', 'expired', 'callables', 'key', 'parents', 'load_options', 'class_', 'expired_attributes' ) if k in self.__dict__ ) if self.load_path: state_dict['load_path'] = self.load_path.serialize() state_dict['manager'] = self.manager._serialize(self, state_dict) return state_dict def __setstate__(self, state_dict): inst = state_dict['instance'] if inst is not None: self.obj = weakref.ref(inst, self._cleanup) self.class_ = inst.__class__ else: # None being possible here generally new as of 0.7.4 # due to storage of state in "parents". "class_" # also new. self.obj = None self.class_ = state_dict['class_'] self.committed_state = state_dict.get('committed_state', {}) self._pending_mutations = state_dict.get('_pending_mutations', {}) self.parents = state_dict.get('parents', {}) self.modified = state_dict.get('modified', False) self.expired = state_dict.get('expired', False) if 'callables' in state_dict: self.callables = state_dict['callables'] try: self.expired_attributes = state_dict['expired_attributes'] except KeyError: self.expired_attributes = set() # 0.9 and earlier compat for k in list(self.callables): if self.callables[k] is self: self.expired_attributes.add(k) del self.callables[k] self.__dict__.update([ (k, state_dict[k]) for k in ( 'key', 'load_options', ) if k in state_dict ]) if 'load_path' in state_dict: self.load_path = PathRegistry.\ deserialize(state_dict['load_path']) state_dict['manager'](self, inst, state_dict) def _reset(self, dict_, key): """Remove the given attribute and any callables associated with it.""" old = dict_.pop(key, None) if old is not None and self.manager[key].impl.collection: self.manager[key].impl._invalidate_collection(old) self.expired_attributes.discard(key) if self.callables: self.callables.pop(key, None) @classmethod def _instance_level_callable_processor(cls, manager, fn, key): impl = manager[key].impl if impl.collection: def _set_callable(state, dict_, row): if 'callables' not in state.__dict__: state.callables = {} old = dict_.pop(key, None) if old is not None: impl._invalidate_collection(old) state.callables[key] = fn else: def _set_callable(state, dict_, row): if 'callables' not in state.__dict__: state.callables = {} state.callables[key] = fn return _set_callable def _expire(self, dict_, modified_set): self.expired = True if self.modified: modified_set.discard(self) self.committed_state.clear() self.modified = False self._strong_obj = None if '_pending_mutations' in self.__dict__: del self.__dict__['_pending_mutations'] if 'parents' in self.__dict__: del self.__dict__['parents'] self.expired_attributes.update( [impl.key for impl in self.manager._scalar_loader_impls if impl.expire_missing or impl.key in dict_] ) if self.callables: for k in self.expired_attributes.intersection(self.callables): del self.callables[k] for k in self.manager._collection_impl_keys.intersection(dict_): collection = dict_.pop(k) collection._sa_adapter.invalidated = True for key in self.manager._all_key_set.intersection(dict_): del dict_[key] self.manager.dispatch.expire(self, None) def _expire_attributes(self, dict_, attribute_names): pending = self.__dict__.get('_pending_mutations', None) callables = self.callables for key in attribute_names: impl = self.manager[key].impl if impl.accepts_scalar_loader: self.expired_attributes.add(key) if callables and key in callables: del callables[key] old = dict_.pop(key, None) if impl.collection and old is not None: impl._invalidate_collection(old) self.committed_state.pop(key, None) if pending: pending.pop(key, None) self.manager.dispatch.expire(self, attribute_names) def _load_expired(self, state, passive): """__call__ allows the InstanceState to act as a deferred callable for loading expired attributes, which is also serializable (picklable). """ if not passive & SQL_OK: return PASSIVE_NO_RESULT toload = self.expired_attributes.\ intersection(self.unmodified) self.manager.deferred_scalar_loader(self, toload) # if the loader failed, or this # instance state didn't have an identity, # the attributes still might be in the callables # dict. ensure they are removed. self.expired_attributes.clear() return ATTR_WAS_SET @property def unmodified(self): """Return the set of keys which have no uncommitted changes""" return set(self.manager).difference(self.committed_state) def unmodified_intersection(self, keys): """Return self.unmodified.intersection(keys).""" return set(keys).intersection(self.manager).\ difference(self.committed_state) @property def unloaded(self): """Return the set of keys which do not have a loaded value. This includes expired attributes and any other attribute that was never populated or modified. """ return set(self.manager).\ difference(self.committed_state).\ difference(self.dict) @property def _unloaded_non_object(self): return self.unloaded.intersection( attr for attr in self.manager if self.manager[attr].impl.accepts_scalar_loader ) def _instance_dict(self): return None def _modified_event( self, dict_, attr, previous, collection=False, force=False): if not attr.send_modified_events: return if attr.key not in self.committed_state or force: if collection: if previous is NEVER_SET: if attr.key in dict_: previous = dict_[attr.key] if previous not in (None, NO_VALUE, NEVER_SET): previous = attr.copy(previous) self.committed_state[attr.key] = previous # assert self._strong_obj is None or self.modified if (self.session_id and self._strong_obj is None) \ or not self.modified: self.modified = True instance_dict = self._instance_dict() if instance_dict: instance_dict._modified.add(self) # only create _strong_obj link if attached # to a session inst = self.obj() if self.session_id: self._strong_obj = inst if inst is None: raise orm_exc.ObjectDereferencedError( "Can't emit change event for attribute '%s' - " "parent object of type %s has been garbage " "collected." % ( self.manager[attr.key], base.state_class_str(self) )) def _commit(self, dict_, keys): """Commit attributes. This is used by a partial-attribute load operation to mark committed those attributes which were refreshed from the database. Attributes marked as "expired" can potentially remain "expired" after this step if a value was not populated in state.dict. """ for key in keys: self.committed_state.pop(key, None) self.expired = False self.expired_attributes.difference_update( set(keys).intersection(dict_)) # the per-keys commit removes object-level callables, # while that of commit_all does not. it's not clear # if this behavior has a clear rationale, however tests do # ensure this is what it does. if self.callables: for key in set(self.callables).\ intersection(keys).\ intersection(dict_): del self.callables[key] def _commit_all(self, dict_, instance_dict=None): """commit all attributes unconditionally. This is used after a flush() or a full load/refresh to remove all pending state from the instance. - all attributes are marked as "committed" - the "strong dirty reference" is removed - the "modified" flag is set to False - any "expired" markers for scalar attributes loaded are removed. - lazy load callables for objects / collections *stay* Attributes marked as "expired" can potentially remain "expired" after this step if a value was not populated in state.dict. """ self._commit_all_states([(self, dict_)], instance_dict) @classmethod def _commit_all_states(self, iter, instance_dict=None): """Mass / highly inlined version of commit_all().""" for state, dict_ in iter: state_dict = state.__dict__ state.committed_state.clear() if '_pending_mutations' in state_dict: del state_dict['_pending_mutations'] state.expired_attributes.difference_update(dict_) if instance_dict and state.modified: instance_dict._modified.discard(state) state.modified = state.expired = False state._strong_obj = None class AttributeState(object): """Provide an inspection interface corresponding to a particular attribute on a particular mapped object. The :class:`.AttributeState` object is accessed via the :attr:`.InstanceState.attrs` collection of a particular :class:`.InstanceState`:: from sqlalchemy import inspect insp = inspect(some_mapped_object) attr_state = insp.attrs.some_attribute """ def __init__(self, state, key): self.state = state self.key = key @property def loaded_value(self): """The current value of this attribute as loaded from the database. If the value has not been loaded, or is otherwise not present in the object's dictionary, returns NO_VALUE. """ return self.state.dict.get(self.key, NO_VALUE) @property def value(self): """Return the value of this attribute. This operation is equivalent to accessing the object's attribute directly or via ``getattr()``, and will fire off any pending loader callables if needed. """ return self.state.manager[self.key].__get__( self.state.obj(), self.state.class_) @property def history(self): """Return the current pre-flush change history for this attribute, via the :class:`.History` interface. This method will **not** emit loader callables if the value of the attribute is unloaded. .. seealso:: :meth:`.AttributeState.load_history` - retrieve history using loader callables if the value is not locally present. :func:`.attributes.get_history` - underlying function """ return self.state.get_history(self.key, PASSIVE_NO_INITIALIZE) def load_history(self): """Return the current pre-flush change history for this attribute, via the :class:`.History` interface. This method **will** emit loader callables if the value of the attribute is unloaded. .. seealso:: :attr:`.AttributeState.history` :func:`.attributes.get_history` - underlying function .. versionadded:: 0.9.0 """ return self.state.get_history(self.key, PASSIVE_OFF ^ INIT_OK) class PendingCollection(object): """A writable placeholder for an unloaded collection. Stores items appended to and removed from a collection that has not yet been loaded. When the collection is loaded, the changes stored in PendingCollection are applied to it to produce the final result. """ def __init__(self): self.deleted_items = util.IdentitySet() self.added_items = util.OrderedIdentitySet() def append(self, value): if value in self.deleted_items: self.deleted_items.remove(value) else: self.added_items.add(value) def remove(self, value): if value in self.added_items: self.added_items.remove(value) else: self.deleted_items.add(value)