win32 platform
This commit is contained in:
commit
c1666978b2
1122 changed files with 348397 additions and 0 deletions
379
Lib/site-packages/Crypto/PublicKey/DSA.py
Normal file
379
Lib/site-packages/Crypto/PublicKey/DSA.py
Normal file
|
|
@ -0,0 +1,379 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# PublicKey/DSA.py : DSA signature primitive
|
||||
#
|
||||
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
|
||||
"""DSA public-key signature algorithm.
|
||||
|
||||
DSA_ is a widespread public-key signature algorithm. Its security is
|
||||
based on the discrete logarithm problem (DLP_). Given a cyclic
|
||||
group, a generator *g*, and an element *h*, it is hard
|
||||
to find an integer *x* such that *g^x = h*. The problem is believed
|
||||
to be difficult, and it has been proved such (and therefore secure) for
|
||||
more than 30 years.
|
||||
|
||||
The group is actually a sub-group over the integers modulo *p*, with *p* prime.
|
||||
The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*.
|
||||
The cryptographic strength is linked to the magnitude of *p* and *q*.
|
||||
The signer holds a value *x* (*0<x<q-1*) as private key, and its public
|
||||
key (*y* where *y=g^x mod p*) is distributed.
|
||||
|
||||
In 2012, a sufficient size is deemed to be 2048 bits for *p* and 256 bits for *q*.
|
||||
For more information, see the most recent ECRYPT_ report.
|
||||
|
||||
DSA is reasonably secure for new designs.
|
||||
|
||||
The algorithm can only be used for authentication (digital signature).
|
||||
DSA cannot be used for confidentiality (encryption).
|
||||
|
||||
The values *(p,q,g)* are called *domain parameters*;
|
||||
they are not sensitive but must be shared by both parties (the signer and the verifier).
|
||||
Different signers can share the same domain parameters with no security
|
||||
concerns.
|
||||
|
||||
The DSA signature is twice as big as the size of *q* (64 bytes if *q* is 256 bit
|
||||
long).
|
||||
|
||||
This module provides facilities for generating new DSA keys and for constructing
|
||||
them from known components. DSA keys allows you to perform basic signing and
|
||||
verification.
|
||||
|
||||
>>> from Crypto.Random import random
|
||||
>>> from Crypto.PublicKey import DSA
|
||||
>>> from Crypto.Hash import SHA
|
||||
>>>
|
||||
>>> message = "Hello"
|
||||
>>> key = DSA.generate(1024)
|
||||
>>> h = SHA.new(message).digest()
|
||||
>>> k = random.StrongRandom().randint(1,key.q-1)
|
||||
>>> sig = key.sign(h,k)
|
||||
>>> ...
|
||||
>>> if key.verify(h,sig):
|
||||
>>> print "OK"
|
||||
>>> else:
|
||||
>>> print "Incorrect signature"
|
||||
|
||||
.. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
|
||||
.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
|
||||
.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
|
||||
"""
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
__all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj']
|
||||
|
||||
import sys
|
||||
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
|
||||
from Crypto.Util.py21compat import *
|
||||
|
||||
from Crypto.PublicKey import _DSA, _slowmath, pubkey
|
||||
from Crypto import Random
|
||||
|
||||
try:
|
||||
from Crypto.PublicKey import _fastmath
|
||||
except ImportError:
|
||||
_fastmath = None
|
||||
|
||||
class _DSAobj(pubkey.pubkey):
|
||||
"""Class defining an actual DSA key.
|
||||
|
||||
:undocumented: __getstate__, __setstate__, __repr__, __getattr__
|
||||
"""
|
||||
#: Dictionary of DSA parameters.
|
||||
#:
|
||||
#: A public key will only have the following entries:
|
||||
#:
|
||||
#: - **y**, the public key.
|
||||
#: - **g**, the generator.
|
||||
#: - **p**, the modulus.
|
||||
#: - **q**, the order of the sub-group.
|
||||
#:
|
||||
#: A private key will also have:
|
||||
#:
|
||||
#: - **x**, the private key.
|
||||
keydata = ['y', 'g', 'p', 'q', 'x']
|
||||
|
||||
def __init__(self, implementation, key):
|
||||
self.implementation = implementation
|
||||
self.key = key
|
||||
|
||||
def __getattr__(self, attrname):
|
||||
if attrname in self.keydata:
|
||||
# For backward compatibility, allow the user to get (not set) the
|
||||
# DSA key parameters directly from this object.
|
||||
return getattr(self.key, attrname)
|
||||
else:
|
||||
raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
|
||||
|
||||
def sign(self, M, K):
|
||||
"""Sign a piece of data with DSA.
|
||||
|
||||
:Parameter M: The piece of data to sign with DSA. It may
|
||||
not be longer in bit size than the sub-group order (*q*).
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter K: A secret number, chosen randomly in the closed
|
||||
range *[1,q-1]*.
|
||||
:Type K: long (recommended) or byte string (not recommended)
|
||||
|
||||
:attention: selection of *K* is crucial for security. Generating a
|
||||
random number larger than *q* and taking the modulus by *q* is
|
||||
**not** secure, since smaller values will occur more frequently.
|
||||
Generating a random number systematically smaller than *q-1*
|
||||
(e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general,
|
||||
it shall not be possible for an attacker to know the value of `any
|
||||
bit of K`__.
|
||||
|
||||
:attention: The number *K* shall not be reused for any other
|
||||
operation and shall be discarded immediately.
|
||||
|
||||
:attention: M must be a digest cryptographic hash, otherwise
|
||||
an attacker may mount an existential forgery attack.
|
||||
|
||||
:Return: A tuple with 2 longs.
|
||||
|
||||
.. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm
|
||||
"""
|
||||
return pubkey.pubkey.sign(self, M, K)
|
||||
|
||||
def verify(self, M, signature):
|
||||
"""Verify the validity of a DSA signature.
|
||||
|
||||
:Parameter M: The expected message.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter signature: The DSA signature to verify.
|
||||
:Type signature: A tuple with 2 longs as return by `sign`
|
||||
|
||||
:Return: True if the signature is correct, False otherwise.
|
||||
"""
|
||||
return pubkey.pubkey.verify(self, M, signature)
|
||||
|
||||
def _encrypt(self, c, K):
|
||||
raise TypeError("DSA cannot encrypt")
|
||||
|
||||
def _decrypt(self, c):
|
||||
raise TypeError("DSA cannot decrypt")
|
||||
|
||||
def _blind(self, m, r):
|
||||
raise TypeError("DSA cannot blind")
|
||||
|
||||
def _unblind(self, m, r):
|
||||
raise TypeError("DSA cannot unblind")
|
||||
|
||||
def _sign(self, m, k):
|
||||
return self.key._sign(m, k)
|
||||
|
||||
def _verify(self, m, sig):
|
||||
(r, s) = sig
|
||||
return self.key._verify(m, r, s)
|
||||
|
||||
def has_private(self):
|
||||
return self.key.has_private()
|
||||
|
||||
def size(self):
|
||||
return self.key.size()
|
||||
|
||||
def can_blind(self):
|
||||
return False
|
||||
|
||||
def can_encrypt(self):
|
||||
return False
|
||||
|
||||
def can_sign(self):
|
||||
return True
|
||||
|
||||
def publickey(self):
|
||||
return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q))
|
||||
|
||||
def __getstate__(self):
|
||||
d = {}
|
||||
for k in self.keydata:
|
||||
try:
|
||||
d[k] = getattr(self.key, k)
|
||||
except AttributeError:
|
||||
pass
|
||||
return d
|
||||
|
||||
def __setstate__(self, d):
|
||||
if not hasattr(self, 'implementation'):
|
||||
self.implementation = DSAImplementation()
|
||||
t = []
|
||||
for k in self.keydata:
|
||||
if k not in d:
|
||||
break
|
||||
t.append(d[k])
|
||||
self.key = self.implementation._math.dsa_construct(*tuple(t))
|
||||
|
||||
def __repr__(self):
|
||||
attrs = []
|
||||
for k in self.keydata:
|
||||
if k == 'p':
|
||||
attrs.append("p(%d)" % (self.size()+1,))
|
||||
elif hasattr(self.key, k):
|
||||
attrs.append(k)
|
||||
if self.has_private():
|
||||
attrs.append("private")
|
||||
# PY3K: This is meant to be text, do not change to bytes (data)
|
||||
return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
|
||||
|
||||
class DSAImplementation(object):
|
||||
"""
|
||||
A DSA key factory.
|
||||
|
||||
This class is only internally used to implement the methods of the
|
||||
`Crypto.PublicKey.DSA` module.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Create a new DSA key factory.
|
||||
|
||||
:Keywords:
|
||||
use_fast_math : bool
|
||||
Specify which mathematic library to use:
|
||||
|
||||
- *None* (default). Use fastest math available.
|
||||
- *True* . Use fast math.
|
||||
- *False* . Use slow math.
|
||||
default_randfunc : callable
|
||||
Specify how to collect random data:
|
||||
|
||||
- *None* (default). Use Random.new().read().
|
||||
- not *None* . Use the specified function directly.
|
||||
:Raise RuntimeError:
|
||||
When **use_fast_math** =True but fast math is not available.
|
||||
"""
|
||||
use_fast_math = kwargs.get('use_fast_math', None)
|
||||
if use_fast_math is None: # Automatic
|
||||
if _fastmath is not None:
|
||||
self._math = _fastmath
|
||||
else:
|
||||
self._math = _slowmath
|
||||
|
||||
elif use_fast_math: # Explicitly select fast math
|
||||
if _fastmath is not None:
|
||||
self._math = _fastmath
|
||||
else:
|
||||
raise RuntimeError("fast math module not available")
|
||||
|
||||
else: # Explicitly select slow math
|
||||
self._math = _slowmath
|
||||
|
||||
self.error = self._math.error
|
||||
|
||||
# 'default_randfunc' parameter:
|
||||
# None (default) - use Random.new().read
|
||||
# not None - use the specified function
|
||||
self._default_randfunc = kwargs.get('default_randfunc', None)
|
||||
self._current_randfunc = None
|
||||
|
||||
def _get_randfunc(self, randfunc):
|
||||
if randfunc is not None:
|
||||
return randfunc
|
||||
elif self._current_randfunc is None:
|
||||
self._current_randfunc = Random.new().read
|
||||
return self._current_randfunc
|
||||
|
||||
def generate(self, bits, randfunc=None, progress_func=None):
|
||||
"""Randomly generate a fresh, new DSA key.
|
||||
|
||||
:Parameters:
|
||||
bits : int
|
||||
Key length, or size (in bits) of the DSA modulus
|
||||
*p*.
|
||||
It must be a multiple of 64, in the closed
|
||||
interval [512,1024].
|
||||
randfunc : callable
|
||||
Random number generation function; it should accept
|
||||
a single integer N and return a string of random data
|
||||
N bytes long.
|
||||
If not specified, a new one will be instantiated
|
||||
from ``Crypto.Random``.
|
||||
progress_func : callable
|
||||
Optional function that will be called with a short string
|
||||
containing the key parameter currently being generated;
|
||||
it's useful for interactive applications where a user is
|
||||
waiting for a key to be generated.
|
||||
|
||||
:attention: You should always use a cryptographically secure random number generator,
|
||||
such as the one defined in the ``Crypto.Random`` module; **don't** just use the
|
||||
current time and the ``random`` module.
|
||||
|
||||
:Return: A DSA key object (`_DSAobj`).
|
||||
|
||||
:Raise ValueError:
|
||||
When **bits** is too little, too big, or not a multiple of 64.
|
||||
"""
|
||||
|
||||
# Check against FIPS 186-2, which says that the size of the prime p
|
||||
# must be a multiple of 64 bits between 512 and 1024
|
||||
for i in (0, 1, 2, 3, 4, 5, 6, 7, 8):
|
||||
if bits == 512 + 64*i:
|
||||
return self._generate(bits, randfunc, progress_func)
|
||||
|
||||
# The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit
|
||||
# primes, but only with longer q values. Since the current DSA
|
||||
# implementation only supports a 160-bit q, we don't support larger
|
||||
# values.
|
||||
raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,))
|
||||
|
||||
def _generate(self, bits, randfunc=None, progress_func=None):
|
||||
rf = self._get_randfunc(randfunc)
|
||||
obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module
|
||||
key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x)
|
||||
return _DSAobj(self, key)
|
||||
|
||||
def construct(self, tup):
|
||||
"""Construct a DSA key from a tuple of valid DSA components.
|
||||
|
||||
The modulus *p* must be a prime.
|
||||
|
||||
The following equations must apply:
|
||||
|
||||
- p-1 = 0 mod q
|
||||
- g^x = y mod p
|
||||
- 0 < x < q
|
||||
- 1 < g < p
|
||||
|
||||
:Parameters:
|
||||
tup : tuple
|
||||
A tuple of long integers, with 4 or 5 items
|
||||
in the following order:
|
||||
|
||||
1. Public key (*y*).
|
||||
2. Sub-group generator (*g*).
|
||||
3. Modulus, finite field order (*p*).
|
||||
4. Sub-group order (*q*).
|
||||
5. Private key (*x*). Optional.
|
||||
|
||||
:Return: A DSA key object (`_DSAobj`).
|
||||
"""
|
||||
key = self._math.dsa_construct(*tup)
|
||||
return _DSAobj(self, key)
|
||||
|
||||
_impl = DSAImplementation()
|
||||
generate = _impl.generate
|
||||
construct = _impl.construct
|
||||
error = _impl.error
|
||||
|
||||
# vim:set ts=4 sw=4 sts=4 expandtab:
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue