390 lines
10 KiB
Python
390 lines
10 KiB
Python
|
# Copyright 2007 Google, Inc. All Rights Reserved.
|
||
|
# Licensed to PSF under a Contributor Agreement.
|
||
|
|
||
|
"""Abstract Base Classes (ABCs) for numbers, according to PEP 3141.
|
||
|
|
||
|
TODO: Fill out more detailed documentation on the operators."""
|
||
|
|
||
|
from abc import ABCMeta, abstractmethod
|
||
|
|
||
|
__all__ = ["Number", "Complex", "Real", "Rational", "Integral"]
|
||
|
|
||
|
class Number(metaclass=ABCMeta):
|
||
|
"""All numbers inherit from this class.
|
||
|
|
||
|
If you just want to check if an argument x is a number, without
|
||
|
caring what kind, use isinstance(x, Number).
|
||
|
"""
|
||
|
__slots__ = ()
|
||
|
|
||
|
# Concrete numeric types must provide their own hash implementation
|
||
|
__hash__ = None
|
||
|
|
||
|
|
||
|
## Notes on Decimal
|
||
|
## ----------------
|
||
|
## Decimal has all of the methods specified by the Real abc, but it should
|
||
|
## not be registered as a Real because decimals do not interoperate with
|
||
|
## binary floats (i.e. Decimal('3.14') + 2.71828 is undefined). But,
|
||
|
## abstract reals are expected to interoperate (i.e. R1 + R2 should be
|
||
|
## expected to work if R1 and R2 are both Reals).
|
||
|
|
||
|
class Complex(Number):
|
||
|
"""Complex defines the operations that work on the builtin complex type.
|
||
|
|
||
|
In short, those are: a conversion to complex, .real, .imag, +, -,
|
||
|
*, /, abs(), .conjugate, ==, and !=.
|
||
|
|
||
|
If it is given heterogeneous arguments, and doesn't have special
|
||
|
knowledge about them, it should fall back to the builtin complex
|
||
|
type as described below.
|
||
|
"""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __complex__(self):
|
||
|
"""Return a builtin complex instance. Called for complex(self)."""
|
||
|
|
||
|
def __bool__(self):
|
||
|
"""True if self != 0. Called for bool(self)."""
|
||
|
return self != 0
|
||
|
|
||
|
@property
|
||
|
@abstractmethod
|
||
|
def real(self):
|
||
|
"""Retrieve the real component of this number.
|
||
|
|
||
|
This should subclass Real.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@property
|
||
|
@abstractmethod
|
||
|
def imag(self):
|
||
|
"""Retrieve the imaginary component of this number.
|
||
|
|
||
|
This should subclass Real.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __add__(self, other):
|
||
|
"""self + other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __radd__(self, other):
|
||
|
"""other + self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __neg__(self):
|
||
|
"""-self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __pos__(self):
|
||
|
"""+self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
"""self - other"""
|
||
|
return self + -other
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
"""other - self"""
|
||
|
return -self + other
|
||
|
|
||
|
@abstractmethod
|
||
|
def __mul__(self, other):
|
||
|
"""self * other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rmul__(self, other):
|
||
|
"""other * self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __truediv__(self, other):
|
||
|
"""self / other: Should promote to float when necessary."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rtruediv__(self, other):
|
||
|
"""other / self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __pow__(self, exponent):
|
||
|
"""self**exponent; should promote to float or complex when necessary."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rpow__(self, base):
|
||
|
"""base ** self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __abs__(self):
|
||
|
"""Returns the Real distance from 0. Called for abs(self)."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def conjugate(self):
|
||
|
"""(x+y*i).conjugate() returns (x-y*i)."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __eq__(self, other):
|
||
|
"""self == other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
Complex.register(complex)
|
||
|
|
||
|
|
||
|
class Real(Complex):
|
||
|
"""To Complex, Real adds the operations that work on real numbers.
|
||
|
|
||
|
In short, those are: a conversion to float, trunc(), divmod,
|
||
|
%, <, <=, >, and >=.
|
||
|
|
||
|
Real also provides defaults for the derived operations.
|
||
|
"""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __float__(self):
|
||
|
"""Any Real can be converted to a native float object.
|
||
|
|
||
|
Called for float(self)."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __trunc__(self):
|
||
|
"""trunc(self): Truncates self to an Integral.
|
||
|
|
||
|
Returns an Integral i such that:
|
||
|
* i>0 iff self>0;
|
||
|
* abs(i) <= abs(self);
|
||
|
* for any Integral j satisfying the first two conditions,
|
||
|
abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
|
||
|
i.e. "truncate towards 0".
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __floor__(self):
|
||
|
"""Finds the greatest Integral <= self."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __ceil__(self):
|
||
|
"""Finds the least Integral >= self."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __round__(self, ndigits=None):
|
||
|
"""Rounds self to ndigits decimal places, defaulting to 0.
|
||
|
|
||
|
If ndigits is omitted or None, returns an Integral, otherwise
|
||
|
returns a Real. Rounds half toward even.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __divmod__(self, other):
|
||
|
"""divmod(self, other): The pair (self // other, self % other).
|
||
|
|
||
|
Sometimes this can be computed faster than the pair of
|
||
|
operations.
|
||
|
"""
|
||
|
return (self // other, self % other)
|
||
|
|
||
|
def __rdivmod__(self, other):
|
||
|
"""divmod(other, self): The pair (self // other, self % other).
|
||
|
|
||
|
Sometimes this can be computed faster than the pair of
|
||
|
operations.
|
||
|
"""
|
||
|
return (other // self, other % self)
|
||
|
|
||
|
@abstractmethod
|
||
|
def __floordiv__(self, other):
|
||
|
"""self // other: The floor() of self/other."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rfloordiv__(self, other):
|
||
|
"""other // self: The floor() of other/self."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __mod__(self, other):
|
||
|
"""self % other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rmod__(self, other):
|
||
|
"""other % self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __lt__(self, other):
|
||
|
"""self < other
|
||
|
|
||
|
< on Reals defines a total ordering, except perhaps for NaN."""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __le__(self, other):
|
||
|
"""self <= other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
# Concrete implementations of Complex abstract methods.
|
||
|
def __complex__(self):
|
||
|
"""complex(self) == complex(float(self), 0)"""
|
||
|
return complex(float(self))
|
||
|
|
||
|
@property
|
||
|
def real(self):
|
||
|
"""Real numbers are their real component."""
|
||
|
return +self
|
||
|
|
||
|
@property
|
||
|
def imag(self):
|
||
|
"""Real numbers have no imaginary component."""
|
||
|
return 0
|
||
|
|
||
|
def conjugate(self):
|
||
|
"""Conjugate is a no-op for Reals."""
|
||
|
return +self
|
||
|
|
||
|
Real.register(float)
|
||
|
|
||
|
|
||
|
class Rational(Real):
|
||
|
""".numerator and .denominator should be in lowest terms."""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
@property
|
||
|
@abstractmethod
|
||
|
def numerator(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@property
|
||
|
@abstractmethod
|
||
|
def denominator(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
# Concrete implementation of Real's conversion to float.
|
||
|
def __float__(self):
|
||
|
"""float(self) = self.numerator / self.denominator
|
||
|
|
||
|
It's important that this conversion use the integer's "true"
|
||
|
division rather than casting one side to float before dividing
|
||
|
so that ratios of huge integers convert without overflowing.
|
||
|
|
||
|
"""
|
||
|
return self.numerator / self.denominator
|
||
|
|
||
|
|
||
|
class Integral(Rational):
|
||
|
"""Integral adds a conversion to int and the bit-string operations."""
|
||
|
|
||
|
__slots__ = ()
|
||
|
|
||
|
@abstractmethod
|
||
|
def __int__(self):
|
||
|
"""int(self)"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __index__(self):
|
||
|
"""Called whenever an index is needed, such as in slicing"""
|
||
|
return int(self)
|
||
|
|
||
|
@abstractmethod
|
||
|
def __pow__(self, exponent, modulus=None):
|
||
|
"""self ** exponent % modulus, but maybe faster.
|
||
|
|
||
|
Accept the modulus argument if you want to support the
|
||
|
3-argument version of pow(). Raise a TypeError if exponent < 0
|
||
|
or any argument isn't Integral. Otherwise, just implement the
|
||
|
2-argument version described in Complex.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __lshift__(self, other):
|
||
|
"""self << other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rlshift__(self, other):
|
||
|
"""other << self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rshift__(self, other):
|
||
|
"""self >> other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rrshift__(self, other):
|
||
|
"""other >> self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __and__(self, other):
|
||
|
"""self & other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rand__(self, other):
|
||
|
"""other & self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __xor__(self, other):
|
||
|
"""self ^ other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __rxor__(self, other):
|
||
|
"""other ^ self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __or__(self, other):
|
||
|
"""self | other"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __ror__(self, other):
|
||
|
"""other | self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abstractmethod
|
||
|
def __invert__(self):
|
||
|
"""~self"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
# Concrete implementations of Rational and Real abstract methods.
|
||
|
def __float__(self):
|
||
|
"""float(self) == float(int(self))"""
|
||
|
return float(int(self))
|
||
|
|
||
|
@property
|
||
|
def numerator(self):
|
||
|
"""Integers are their own numerators."""
|
||
|
return +self
|
||
|
|
||
|
@property
|
||
|
def denominator(self):
|
||
|
"""Integers have a denominator of 1."""
|
||
|
return 1
|
||
|
|
||
|
Integral.register(int)
|