openmedialibrary_platform_w.../Lib/site-packages/Crypto/Signature/PKCS1_PSS.py

356 lines
12 KiB
Python
Raw Permalink Normal View History

2019-01-20 10:35:31 +00:00
# -*- coding: utf-8 -*-
#
# Signature/PKCS1_PSS.py : PKCS#1 PPS
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""RSA digital signature protocol with appendix according to PKCS#1 PSS.
See RFC3447__ or the `original RSA Labs specification`__.
This scheme is more properly called ``RSASSA-PSS``.
For example, a sender may authenticate a message using SHA-1 and PSS like
this:
>>> from Crypto.Signature import PKCS1_PSS
>>> from Crypto.Hash import SHA
>>> from Crypto.PublicKey import RSA
>>> from Crypto import Random
>>>
>>> message = 'To be signed'
>>> key = RSA.importKey(open('privkey.der').read())
>>> h = SHA.new()
>>> h.update(message)
>>> signer = PKCS1_PSS.new(key)
>>> signature = PKCS1_PSS.sign(key)
At the receiver side, verification can be done like using the public part of
the RSA key:
>>> key = RSA.importKey(open('pubkey.der').read())
>>> h = SHA.new()
>>> h.update(message)
>>> verifier = PKCS1_PSS.new(key)
>>> if verifier.verify(h, signature):
>>> print "The signature is authentic."
>>> else:
>>> print "The signature is not authentic."
:undocumented: __revision__, __package__
.. __: http://www.ietf.org/rfc/rfc3447.txt
.. __: http://www.rsa.com/rsalabs/node.asp?id=2125
"""
# Allow nested scopes in Python 2.1
# See http://oreilly.com/pub/a/python/2001/04/19/pythonnews.html
__revision__ = "$Id$"
__all__ = [ 'new', 'PSS_SigScheme' ]
from Crypto.Util.py3compat import *
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
from Crypto.Util.py21compat import *
import Crypto.Util.number
from Crypto.Util.number import ceil_shift, ceil_div, long_to_bytes
from Crypto.Util.strxor import strxor
class PSS_SigScheme:
"""This signature scheme can perform PKCS#1 PSS RSA signature or verification."""
def __init__(self, key, mgfunc, saltLen):
"""Initialize this PKCS#1 PSS signature scheme object.
:Parameters:
key : an RSA key object
If a private half is given, both signature and verification are possible.
If a public half is given, only verification is possible.
mgfunc : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
saltLen : int
Length of the salt, in bytes.
"""
self._key = key
self._saltLen = saltLen
self._mgfunc = mgfunc
def can_sign(self):
"""Return True if this cipher object can be used for signing messages."""
return self._key.has_private()
def sign(self, mhash):
"""Produce the PKCS#1 PSS signature of a message.
This function is named ``RSASSA-PSS-SIGN``, and is specified in
section 8.1.1 of RFC3447.
:Parameters:
mhash : hash object
The hash that was carried out over the message. This is an object
belonging to the `Crypto.Hash` module.
:Return: The PSS signature encoded as a string.
:Raise ValueError:
If the RSA key length is not sufficiently long to deal with the given
hash algorithm.
:Raise TypeError:
If the RSA key has no private half.
:attention: Modify the salt length and the mask generation function only
if you know what you are doing.
The receiver must use the same parameters too.
"""
# TODO: Verify the key is RSA
randfunc = self._key._randfunc
# Set defaults for salt length and mask generation function
if self._saltLen == None:
sLen = mhash.digest_size
else:
sLen = self._saltLen
if self._mgfunc:
mgf = self._mgfunc
else:
mgf = lambda x,y: MGF1(x,y,mhash)
modBits = Crypto.Util.number.size(self._key.n)
# See 8.1.1 in RFC3447
k = ceil_div(modBits,8) # Convert from bits to bytes
# Step 1
em = EMSA_PSS_ENCODE(mhash, modBits-1, randfunc, mgf, sLen)
# Step 2a (OS2IP) and 2b (RSASP1)
m = self._key.decrypt(em)
# Step 2c (I2OSP)
S = bchr(0x00)*(k-len(m)) + m
return S
def verify(self, mhash, S):
"""Verify that a certain PKCS#1 PSS signature is authentic.
This function checks if the party holding the private half of the given
RSA key has really signed the message.
This function is called ``RSASSA-PSS-VERIFY``, and is specified in section
8.1.2 of RFC3447.
:Parameters:
mhash : hash object
The hash that was carried out over the message. This is an object
belonging to the `Crypto.Hash` module.
S : string
The signature that needs to be validated.
:Return: True if verification is correct. False otherwise.
"""
# TODO: Verify the key is RSA
# Set defaults for salt length and mask generation function
if self._saltLen == None:
sLen = mhash.digest_size
else:
sLen = self._saltLen
if self._mgfunc:
mgf = self._mgfunc
else:
mgf = lambda x,y: MGF1(x,y,mhash)
modBits = Crypto.Util.number.size(self._key.n)
# See 8.1.2 in RFC3447
k = ceil_div(modBits,8) # Convert from bits to bytes
# Step 1
if len(S) != k:
return False
# Step 2a (O2SIP), 2b (RSAVP1), and partially 2c (I2OSP)
# Note that signature must be smaller than the module
# but RSA.py won't complain about it.
# TODO: Fix RSA object; don't do it here.
em = self._key.encrypt(S, 0)[0]
# Step 2c
emLen = ceil_div(modBits-1,8)
em = bchr(0x00)*(emLen-len(em)) + em
# Step 3
try:
result = EMSA_PSS_VERIFY(mhash, em, modBits-1, mgf, sLen)
except ValueError:
return False
# Step 4
return result
def MGF1(mgfSeed, maskLen, hash):
"""Mask Generation Function, described in B.2.1"""
T = b("")
for counter in range(ceil_div(maskLen, hash.digest_size)):
c = long_to_bytes(counter, 4)
T = T + hash.new(mgfSeed + c).digest()
assert(len(T)>=maskLen)
return T[:maskLen]
def EMSA_PSS_ENCODE(mhash, emBits, randFunc, mgf, sLen):
"""
Implement the ``EMSA-PSS-ENCODE`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.1).
The original ``EMSA-PSS-ENCODE`` actually accepts the message ``M`` as input,
and hash it internally. Here, we expect that the message has already
been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message being signed.
emBits : int
Maximum length of the final encoding, in bits.
randFunc : callable
An RNG function that accepts as only parameter an int, and returns
a string of random bytes, to be used as salt.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Return: An ``emLen`` byte long string that encodes the hash
(with ``emLen = \ceil(emBits/8)``).
:Raise ValueError:
When digest or salt length are too big.
"""
emLen = ceil_div(emBits,8)
# Bitmask of digits that fill up
lmask = 0
for i in range(8*emLen-emBits):
lmask = lmask>>1 | 0x80
# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
raise ValueError("Digest or salt length are too long for given key size.")
# Step 4
salt = b("")
if randFunc and sLen>0:
salt = randFunc(sLen)
# Step 5 and 6
h = mhash.new(bchr(0x00)*8 + mhash.digest() + salt)
# Step 7 and 8
db = bchr(0x00)*(emLen-sLen-mhash.digest_size-2) + bchr(0x01) + salt
# Step 9
dbMask = mgf(h.digest(), emLen-mhash.digest_size-1)
# Step 10
maskedDB = strxor(db,dbMask)
# Step 11
maskedDB = bchr(bord(maskedDB[0]) & ~lmask) + maskedDB[1:]
# Step 12
em = maskedDB + h.digest() + bchr(0xBC)
return em
def EMSA_PSS_VERIFY(mhash, em, emBits, mgf, sLen):
"""
Implement the ``EMSA-PSS-VERIFY`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.2).
``EMSA-PSS-VERIFY`` actually accepts the message ``M`` as input,
and hash it internally. Here, we expect that the message has already
been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message to be verified.
em : string
The signature to verify, therefore proving that the sender really signed
the message that was received.
emBits : int
Length of the final encoding (em), in bits.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Return: 0 if the encoding is consistent, 1 if it is inconsistent.
:Raise ValueError:
When digest or salt length are too big.
"""
emLen = ceil_div(emBits,8)
# Bitmask of digits that fill up
lmask = 0
for i in range(8*emLen-emBits):
lmask = lmask>>1 | 0x80
# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
return False
# Step 4
if ord(em[-1:])!=0xBC:
return False
# Step 5
maskedDB = em[:emLen-mhash.digest_size-1]
h = em[emLen-mhash.digest_size-1:-1]
# Step 6
if lmask & bord(em[0]):
return False
# Step 7
dbMask = mgf(h, emLen-mhash.digest_size-1)
# Step 8
db = strxor(maskedDB, dbMask)
# Step 9
db = bchr(bord(db[0]) & ~lmask) + db[1:]
# Step 10
if not db.startswith(bchr(0x00)*(emLen-mhash.digest_size-sLen-2) + bchr(0x01)):
return False
# Step 11
salt = b("")
if sLen: salt = db[-sLen:]
# Step 12 and 13
hp = mhash.new(bchr(0x00)*8 + mhash.digest() + salt).digest()
# Step 14
if h!=hp:
return False
return True
def new(key, mgfunc=None, saltLen=None):
"""Return a signature scheme object `PSS_SigScheme` that
can be used to perform PKCS#1 PSS signature or verification.
:Parameters:
key : RSA key object
The key to use to sign or verify the message. This is a `Crypto.PublicKey.RSA` object.
Signing is only possible if *key* is a private RSA key.
mgfunc : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 is used.
saltLen : int
Length of the salt, in bytes. If not specified, it matches the output
size of the hash function.
"""
return PSS_SigScheme(key, mgfunc, saltLen)