platform for raspberry pi

This commit is contained in:
j 2016-06-24 14:50:10 +02:00
commit 73d4832b38
523 changed files with 190349 additions and 0 deletions

View file

@ -0,0 +1,23 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
__all__ = [
"__title__", "__summary__", "__uri__", "__version__", "__author__",
"__email__", "__license__", "__copyright__",
]
__title__ = "cryptography"
__summary__ = ("cryptography is a package which provides cryptographic recipes"
" and primitives to Python developers.")
__uri__ = "https://github.com/pyca/cryptography"
__version__ = "1.4"
__author__ = "The cryptography developers"
__email__ = "cryptography-dev@python.org"
__license__ = "BSD or Apache License, Version 2.0"
__copyright__ = "Copyright 2013-2016 {0}".format(__author__)

View file

@ -0,0 +1,27 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import sys
import warnings
from cryptography.__about__ import (
__author__, __copyright__, __email__, __license__, __summary__, __title__,
__uri__, __version__
)
__all__ = [
"__title__", "__summary__", "__uri__", "__version__", "__author__",
"__email__", "__license__", "__copyright__",
]
if sys.version_info[:2] == (2, 6):
warnings.warn(
"Python 2.6 is no longer supported by the Python core team, please "
"upgrade your Python. A future version of cryptography will drop "
"support for Python 2.6",
DeprecationWarning
)

View file

@ -0,0 +1,56 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from enum import Enum
class _Reasons(Enum):
BACKEND_MISSING_INTERFACE = 0
UNSUPPORTED_HASH = 1
UNSUPPORTED_CIPHER = 2
UNSUPPORTED_PADDING = 3
UNSUPPORTED_MGF = 4
UNSUPPORTED_PUBLIC_KEY_ALGORITHM = 5
UNSUPPORTED_ELLIPTIC_CURVE = 6
UNSUPPORTED_SERIALIZATION = 7
UNSUPPORTED_X509 = 8
UNSUPPORTED_EXCHANGE_ALGORITHM = 9
class UnsupportedAlgorithm(Exception):
def __init__(self, message, reason=None):
super(UnsupportedAlgorithm, self).__init__(message)
self._reason = reason
class AlreadyFinalized(Exception):
pass
class AlreadyUpdated(Exception):
pass
class NotYetFinalized(Exception):
pass
class InvalidTag(Exception):
pass
class InvalidSignature(Exception):
pass
class InternalError(Exception):
def __init__(self, msg, err_code):
super(InternalError, self).__init__(msg)
self.err_code = err_code
class InvalidKey(Exception):
pass

View file

@ -0,0 +1,143 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import base64
import binascii
import os
import struct
import time
import six
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, padding
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives.hmac import HMAC
class InvalidToken(Exception):
pass
_MAX_CLOCK_SKEW = 60
class Fernet(object):
def __init__(self, key, backend=None):
if backend is None:
backend = default_backend()
key = base64.urlsafe_b64decode(key)
if len(key) != 32:
raise ValueError(
"Fernet key must be 32 url-safe base64-encoded bytes."
)
self._signing_key = key[:16]
self._encryption_key = key[16:]
self._backend = backend
@classmethod
def generate_key(cls):
return base64.urlsafe_b64encode(os.urandom(32))
def encrypt(self, data):
current_time = int(time.time())
iv = os.urandom(16)
return self._encrypt_from_parts(data, current_time, iv)
def _encrypt_from_parts(self, data, current_time, iv):
if not isinstance(data, bytes):
raise TypeError("data must be bytes.")
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(data) + padder.finalize()
encryptor = Cipher(
algorithms.AES(self._encryption_key), modes.CBC(iv), self._backend
).encryptor()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
basic_parts = (
b"\x80" + struct.pack(">Q", current_time) + iv + ciphertext
)
h = HMAC(self._signing_key, hashes.SHA256(), backend=self._backend)
h.update(basic_parts)
hmac = h.finalize()
return base64.urlsafe_b64encode(basic_parts + hmac)
def decrypt(self, token, ttl=None):
if not isinstance(token, bytes):
raise TypeError("token must be bytes.")
current_time = int(time.time())
try:
data = base64.urlsafe_b64decode(token)
except (TypeError, binascii.Error):
raise InvalidToken
if not data or six.indexbytes(data, 0) != 0x80:
raise InvalidToken
try:
timestamp, = struct.unpack(">Q", data[1:9])
except struct.error:
raise InvalidToken
if ttl is not None:
if timestamp + ttl < current_time:
raise InvalidToken
if current_time + _MAX_CLOCK_SKEW < timestamp:
raise InvalidToken
h = HMAC(self._signing_key, hashes.SHA256(), backend=self._backend)
h.update(data[:-32])
try:
h.verify(data[-32:])
except InvalidSignature:
raise InvalidToken
iv = data[9:25]
ciphertext = data[25:-32]
decryptor = Cipher(
algorithms.AES(self._encryption_key), modes.CBC(iv), self._backend
).decryptor()
plaintext_padded = decryptor.update(ciphertext)
try:
plaintext_padded += decryptor.finalize()
except ValueError:
raise InvalidToken
unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
unpadded = unpadder.update(plaintext_padded)
try:
unpadded += unpadder.finalize()
except ValueError:
raise InvalidToken
return unpadded
class MultiFernet(object):
def __init__(self, fernets):
fernets = list(fernets)
if not fernets:
raise ValueError(
"MultiFernet requires at least one Fernet instance"
)
self._fernets = fernets
def encrypt(self, msg):
return self._fernets[0].encrypt(msg)
def decrypt(self, msg, ttl=None):
for f in self._fernets:
try:
return f.decrypt(msg, ttl)
except InvalidToken:
pass
raise InvalidToken

View file

@ -0,0 +1,11 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
"""
Hazardous Materials
This is a "Hazardous Materials" module. You should ONLY use it if you're
100% absolutely sure that you know what you're doing because this module
is full of land mines, dragons, and dinosaurs with laser guns.
"""
from __future__ import absolute_import, division, print_function

View file

@ -0,0 +1,37 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import pkg_resources
from cryptography.hazmat.backends.multibackend import MultiBackend
_available_backends_list = None
def _available_backends():
global _available_backends_list
if _available_backends_list is None:
_available_backends_list = [
ep.resolve()
for ep in pkg_resources.iter_entry_points(
"cryptography.backends"
)
]
return _available_backends_list
_default_backend = None
def default_backend():
global _default_backend
if _default_backend is None:
_default_backend = MultiBackend(_available_backends())
return _default_backend

View file

@ -0,0 +1,10 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.backends.commoncrypto.backend import backend
__all__ = ["backend"]

View file

@ -0,0 +1,245 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from collections import namedtuple
from cryptography import utils
from cryptography.exceptions import InternalError
from cryptography.hazmat.backends.commoncrypto.ciphers import (
_CipherContext, _GCMCipherContext
)
from cryptography.hazmat.backends.commoncrypto.hashes import _HashContext
from cryptography.hazmat.backends.commoncrypto.hmac import _HMACContext
from cryptography.hazmat.backends.interfaces import (
CipherBackend, HMACBackend, HashBackend, PBKDF2HMACBackend
)
from cryptography.hazmat.bindings.commoncrypto.binding import Binding
from cryptography.hazmat.primitives.ciphers.algorithms import (
AES, ARC4, Blowfish, CAST5, TripleDES
)
from cryptography.hazmat.primitives.ciphers.modes import (
CBC, CFB, CFB8, CTR, ECB, GCM, OFB
)
HashMethods = namedtuple(
"HashMethods", ["ctx", "hash_init", "hash_update", "hash_final"]
)
@utils.register_interface(CipherBackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
class Backend(object):
"""
CommonCrypto API wrapper.
"""
name = "commoncrypto"
def __init__(self):
self._binding = Binding()
self._ffi = self._binding.ffi
self._lib = self._binding.lib
self._cipher_registry = {}
self._register_default_ciphers()
self._hash_mapping = {
"md5": HashMethods(
"CC_MD5_CTX *", self._lib.CC_MD5_Init,
self._lib.CC_MD5_Update, self._lib.CC_MD5_Final
),
"sha1": HashMethods(
"CC_SHA1_CTX *", self._lib.CC_SHA1_Init,
self._lib.CC_SHA1_Update, self._lib.CC_SHA1_Final
),
"sha224": HashMethods(
"CC_SHA256_CTX *", self._lib.CC_SHA224_Init,
self._lib.CC_SHA224_Update, self._lib.CC_SHA224_Final
),
"sha256": HashMethods(
"CC_SHA256_CTX *", self._lib.CC_SHA256_Init,
self._lib.CC_SHA256_Update, self._lib.CC_SHA256_Final
),
"sha384": HashMethods(
"CC_SHA512_CTX *", self._lib.CC_SHA384_Init,
self._lib.CC_SHA384_Update, self._lib.CC_SHA384_Final
),
"sha512": HashMethods(
"CC_SHA512_CTX *", self._lib.CC_SHA512_Init,
self._lib.CC_SHA512_Update, self._lib.CC_SHA512_Final
),
}
self._supported_hmac_algorithms = {
"md5": self._lib.kCCHmacAlgMD5,
"sha1": self._lib.kCCHmacAlgSHA1,
"sha224": self._lib.kCCHmacAlgSHA224,
"sha256": self._lib.kCCHmacAlgSHA256,
"sha384": self._lib.kCCHmacAlgSHA384,
"sha512": self._lib.kCCHmacAlgSHA512,
}
self._supported_pbkdf2_hmac_algorithms = {
"sha1": self._lib.kCCPRFHmacAlgSHA1,
"sha224": self._lib.kCCPRFHmacAlgSHA224,
"sha256": self._lib.kCCPRFHmacAlgSHA256,
"sha384": self._lib.kCCPRFHmacAlgSHA384,
"sha512": self._lib.kCCPRFHmacAlgSHA512,
}
def hash_supported(self, algorithm):
return algorithm.name in self._hash_mapping
def hmac_supported(self, algorithm):
return algorithm.name in self._supported_hmac_algorithms
def create_hash_ctx(self, algorithm):
return _HashContext(self, algorithm)
def create_hmac_ctx(self, key, algorithm):
return _HMACContext(self, key, algorithm)
def cipher_supported(self, cipher, mode):
return (type(cipher), type(mode)) in self._cipher_registry
def create_symmetric_encryption_ctx(self, cipher, mode):
if isinstance(mode, GCM):
return _GCMCipherContext(
self, cipher, mode, self._lib.kCCEncrypt
)
else:
return _CipherContext(self, cipher, mode, self._lib.kCCEncrypt)
def create_symmetric_decryption_ctx(self, cipher, mode):
if isinstance(mode, GCM):
return _GCMCipherContext(
self, cipher, mode, self._lib.kCCDecrypt
)
else:
return _CipherContext(self, cipher, mode, self._lib.kCCDecrypt)
def pbkdf2_hmac_supported(self, algorithm):
return algorithm.name in self._supported_pbkdf2_hmac_algorithms
def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
key_material):
alg_enum = self._supported_pbkdf2_hmac_algorithms[algorithm.name]
buf = self._ffi.new("char[]", length)
res = self._lib.CCKeyDerivationPBKDF(
self._lib.kCCPBKDF2,
key_material,
len(key_material),
salt,
len(salt),
alg_enum,
iterations,
buf,
length
)
self._check_cipher_response(res)
return self._ffi.buffer(buf)[:]
def _register_cipher_adapter(self, cipher_cls, cipher_const, mode_cls,
mode_const):
if (cipher_cls, mode_cls) in self._cipher_registry:
raise ValueError("Duplicate registration for: {0} {1}.".format(
cipher_cls, mode_cls)
)
self._cipher_registry[cipher_cls, mode_cls] = (cipher_const,
mode_const)
def _register_default_ciphers(self):
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(CFB8, self._lib.kCCModeCFB8),
(OFB, self._lib.kCCModeOFB),
(CTR, self._lib.kCCModeCTR),
(GCM, self._lib.kCCModeGCM),
]:
self._register_cipher_adapter(
AES,
self._lib.kCCAlgorithmAES128,
mode_cls,
mode_const
)
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(CFB8, self._lib.kCCModeCFB8),
(OFB, self._lib.kCCModeOFB),
]:
self._register_cipher_adapter(
TripleDES,
self._lib.kCCAlgorithm3DES,
mode_cls,
mode_const
)
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(OFB, self._lib.kCCModeOFB)
]:
self._register_cipher_adapter(
Blowfish,
self._lib.kCCAlgorithmBlowfish,
mode_cls,
mode_const
)
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(OFB, self._lib.kCCModeOFB),
(CTR, self._lib.kCCModeCTR)
]:
self._register_cipher_adapter(
CAST5,
self._lib.kCCAlgorithmCAST,
mode_cls,
mode_const
)
self._register_cipher_adapter(
ARC4,
self._lib.kCCAlgorithmRC4,
type(None),
self._lib.kCCModeRC4
)
def _check_cipher_response(self, response):
if response == self._lib.kCCSuccess:
return
elif response == self._lib.kCCAlignmentError:
# This error is not currently triggered due to a bug filed as
# rdar://15589470
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
else:
raise InternalError(
"The backend returned an unknown error, consider filing a bug."
" Code: {0}.".format(response),
response
)
def _release_cipher_ctx(self, ctx):
"""
Called by the garbage collector and used to safely dereference and
release the context.
"""
if ctx[0] != self._ffi.NULL:
res = self._lib.CCCryptorRelease(ctx[0])
self._check_cipher_response(res)
ctx[0] = self._ffi.NULL
backend = Backend()

View file

@ -0,0 +1,193 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidTag, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import ciphers, constant_time
from cryptography.hazmat.primitives.ciphers import modes
from cryptography.hazmat.primitives.ciphers.modes import (
CFB, CFB8, CTR, OFB
)
@utils.register_interface(ciphers.CipherContext)
class _CipherContext(object):
def __init__(self, backend, cipher, mode, operation):
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
# There is a bug in CommonCrypto where block ciphers do not raise
# kCCAlignmentError when finalizing if you supply non-block aligned
# data. To work around this we need to keep track of the block
# alignment ourselves, but only for alg+mode combos that require
# block alignment. OFB, CFB, and CTR make a block cipher algorithm
# into a stream cipher so we don't need to track them (and thus their
# block size is effectively 1 byte just like OpenSSL/CommonCrypto
# treat RC4 and other stream cipher block sizes).
# This bug has been filed as rdar://15589470
self._bytes_processed = 0
if (isinstance(cipher, ciphers.BlockCipherAlgorithm) and not
isinstance(mode, (OFB, CFB, CFB8, CTR))):
self._byte_block_size = cipher.block_size // 8
else:
self._byte_block_size = 1
registry = self._backend._cipher_registry
try:
cipher_enum, mode_enum = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
ctx = self._backend._ffi.new("CCCryptorRef *")
ctx = self._backend._ffi.gc(ctx, self._backend._release_cipher_ctx)
if isinstance(mode, modes.ModeWithInitializationVector):
iv_nonce = mode.initialization_vector
elif isinstance(mode, modes.ModeWithNonce):
iv_nonce = mode.nonce
else:
iv_nonce = self._backend._ffi.NULL
if isinstance(mode, CTR):
mode_option = self._backend._lib.kCCModeOptionCTR_BE
else:
mode_option = 0
res = self._backend._lib.CCCryptorCreateWithMode(
operation,
mode_enum, cipher_enum,
self._backend._lib.ccNoPadding, iv_nonce,
cipher.key, len(cipher.key),
self._backend._ffi.NULL, 0, 0, mode_option, ctx)
self._backend._check_cipher_response(res)
self._ctx = ctx
def update(self, data):
# Count bytes processed to handle block alignment.
self._bytes_processed += len(data)
buf = self._backend._ffi.new(
"unsigned char[]", len(data) + self._byte_block_size - 1)
outlen = self._backend._ffi.new("size_t *")
res = self._backend._lib.CCCryptorUpdate(
self._ctx[0], data, len(data), buf,
len(data) + self._byte_block_size - 1, outlen)
self._backend._check_cipher_response(res)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def finalize(self):
# Raise error if block alignment is wrong.
if self._bytes_processed % self._byte_block_size:
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
buf = self._backend._ffi.new("unsigned char[]", self._byte_block_size)
outlen = self._backend._ffi.new("size_t *")
res = self._backend._lib.CCCryptorFinal(
self._ctx[0], buf, len(buf), outlen)
self._backend._check_cipher_response(res)
self._backend._release_cipher_ctx(self._ctx)
return self._backend._ffi.buffer(buf)[:outlen[0]]
@utils.register_interface(ciphers.AEADCipherContext)
@utils.register_interface(ciphers.AEADEncryptionContext)
class _GCMCipherContext(object):
def __init__(self, backend, cipher, mode, operation):
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
self._tag = None
registry = self._backend._cipher_registry
try:
cipher_enum, mode_enum = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
ctx = self._backend._ffi.new("CCCryptorRef *")
ctx = self._backend._ffi.gc(ctx, self._backend._release_cipher_ctx)
self._ctx = ctx
res = self._backend._lib.CCCryptorCreateWithMode(
operation,
mode_enum, cipher_enum,
self._backend._lib.ccNoPadding,
self._backend._ffi.NULL,
cipher.key, len(cipher.key),
self._backend._ffi.NULL, 0, 0, 0, self._ctx)
self._backend._check_cipher_response(res)
res = self._backend._lib.CCCryptorGCMAddIV(
self._ctx[0],
mode.initialization_vector,
len(mode.initialization_vector)
)
self._backend._check_cipher_response(res)
# CommonCrypto has a bug where calling update without at least one
# call to authenticate_additional_data will result in null byte output
# for ciphertext. The following empty byte string call prevents the
# issue, which is present in at least 10.8 and 10.9.
# Filed as rdar://18314544
self.authenticate_additional_data(b"")
def update(self, data):
buf = self._backend._ffi.new("unsigned char[]", len(data))
args = (self._ctx[0], data, len(data), buf)
if self._operation == self._backend._lib.kCCEncrypt:
res = self._backend._lib.CCCryptorGCMEncrypt(*args)
else:
res = self._backend._lib.CCCryptorGCMDecrypt(*args)
self._backend._check_cipher_response(res)
return self._backend._ffi.buffer(buf)[:]
def finalize(self):
# CommonCrypto has a yet another bug where you must make at least one
# call to update. If you pass just AAD and call finalize without a call
# to update you'll get null bytes for tag. The following update call
# prevents this issue, which is present in at least 10.8 and 10.9.
# Filed as rdar://18314580
self.update(b"")
tag_size = self._cipher.block_size // 8
tag_buf = self._backend._ffi.new("unsigned char[]", tag_size)
tag_len = self._backend._ffi.new("size_t *", tag_size)
res = self._backend._lib.CCCryptorGCMFinal(
self._ctx[0], tag_buf, tag_len
)
self._backend._check_cipher_response(res)
self._backend._release_cipher_ctx(self._ctx)
self._tag = self._backend._ffi.buffer(tag_buf)[:]
if (self._operation == self._backend._lib.kCCDecrypt and
not constant_time.bytes_eq(
self._tag[:len(self._mode.tag)], self._mode.tag
)):
raise InvalidTag
return b""
def authenticate_additional_data(self, data):
res = self._backend._lib.CCCryptorGCMAddAAD(
self._ctx[0], data, len(data)
)
self._backend._check_cipher_response(res)
tag = utils.read_only_property("_tag")

View file

@ -0,0 +1,55 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import hashes
@utils.register_interface(hashes.HashContext)
class _HashContext(object):
def __init__(self, backend, algorithm, ctx=None):
self._algorithm = algorithm
self._backend = backend
if ctx is None:
try:
methods = self._backend._hash_mapping[self.algorithm.name]
except KeyError:
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
ctx = self._backend._ffi.new(methods.ctx)
res = methods.hash_init(ctx)
assert res == 1
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def copy(self):
methods = self._backend._hash_mapping[self.algorithm.name]
new_ctx = self._backend._ffi.new(methods.ctx)
# CommonCrypto has no APIs for copying hashes, so we have to copy the
# underlying struct.
new_ctx[0] = self._ctx[0]
return _HashContext(self._backend, self.algorithm, ctx=new_ctx)
def update(self, data):
methods = self._backend._hash_mapping[self.algorithm.name]
res = methods.hash_update(self._ctx, data, len(data))
assert res == 1
def finalize(self):
methods = self._backend._hash_mapping[self.algorithm.name]
buf = self._backend._ffi.new("unsigned char[]",
self.algorithm.digest_size)
res = methods.hash_final(buf, self._ctx)
assert res == 1
return self._backend._ffi.buffer(buf)[:]

View file

@ -0,0 +1,59 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import constant_time, hashes, interfaces
@utils.register_interface(interfaces.MACContext)
@utils.register_interface(hashes.HashContext)
class _HMACContext(object):
def __init__(self, backend, key, algorithm, ctx=None):
self._algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._ffi.new("CCHmacContext *")
try:
alg = self._backend._supported_hmac_algorithms[algorithm.name]
except KeyError:
raise UnsupportedAlgorithm(
"{0} is not a supported HMAC hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
self._backend._lib.CCHmacInit(ctx, alg, key, len(key))
self._ctx = ctx
self._key = key
algorithm = utils.read_only_property("_algorithm")
def copy(self):
copied_ctx = self._backend._ffi.new("CCHmacContext *")
# CommonCrypto has no APIs for copying HMACs, so we have to copy the
# underlying struct.
copied_ctx[0] = self._ctx[0]
return _HMACContext(
self._backend, self._key, self.algorithm, ctx=copied_ctx
)
def update(self, data):
self._backend._lib.CCHmacUpdate(self._ctx, data, len(data))
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]",
self.algorithm.digest_size)
self._backend._lib.CCHmacFinal(self._ctx, buf)
return self._backend._ffi.buffer(buf)[:]
def verify(self, signature):
digest = self.finalize()
if not constant_time.bytes_eq(digest, signature):
raise InvalidSignature("Signature did not match digest.")

View file

@ -0,0 +1,359 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class CipherBackend(object):
@abc.abstractmethod
def cipher_supported(self, cipher, mode):
"""
Return True if the given cipher and mode are supported.
"""
@abc.abstractmethod
def create_symmetric_encryption_ctx(self, cipher, mode):
"""
Get a CipherContext that can be used for encryption.
"""
@abc.abstractmethod
def create_symmetric_decryption_ctx(self, cipher, mode):
"""
Get a CipherContext that can be used for decryption.
"""
@six.add_metaclass(abc.ABCMeta)
class HashBackend(object):
@abc.abstractmethod
def hash_supported(self, algorithm):
"""
Return True if the hash algorithm is supported by this backend.
"""
@abc.abstractmethod
def create_hash_ctx(self, algorithm):
"""
Create a HashContext for calculating a message digest.
"""
@six.add_metaclass(abc.ABCMeta)
class HMACBackend(object):
@abc.abstractmethod
def hmac_supported(self, algorithm):
"""
Return True if the hash algorithm is supported for HMAC by this
backend.
"""
@abc.abstractmethod
def create_hmac_ctx(self, key, algorithm):
"""
Create a MACContext for calculating a message authentication code.
"""
@six.add_metaclass(abc.ABCMeta)
class CMACBackend(object):
@abc.abstractmethod
def cmac_algorithm_supported(self, algorithm):
"""
Returns True if the block cipher is supported for CMAC by this backend
"""
@abc.abstractmethod
def create_cmac_ctx(self, algorithm):
"""
Create a MACContext for calculating a message authentication code.
"""
@six.add_metaclass(abc.ABCMeta)
class PBKDF2HMACBackend(object):
@abc.abstractmethod
def pbkdf2_hmac_supported(self, algorithm):
"""
Return True if the hash algorithm is supported for PBKDF2 by this
backend.
"""
@abc.abstractmethod
def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
key_material):
"""
Return length bytes derived from provided PBKDF2 parameters.
"""
@six.add_metaclass(abc.ABCMeta)
class RSABackend(object):
@abc.abstractmethod
def generate_rsa_private_key(self, public_exponent, key_size):
"""
Generate an RSAPrivateKey instance with public_exponent and a modulus
of key_size bits.
"""
@abc.abstractmethod
def rsa_padding_supported(self, padding):
"""
Returns True if the backend supports the given padding options.
"""
@abc.abstractmethod
def generate_rsa_parameters_supported(self, public_exponent, key_size):
"""
Returns True if the backend supports the given parameters for key
generation.
"""
@abc.abstractmethod
def load_rsa_private_numbers(self, numbers):
"""
Returns an RSAPrivateKey provider.
"""
@abc.abstractmethod
def load_rsa_public_numbers(self, numbers):
"""
Returns an RSAPublicKey provider.
"""
@six.add_metaclass(abc.ABCMeta)
class DSABackend(object):
@abc.abstractmethod
def generate_dsa_parameters(self, key_size):
"""
Generate a DSAParameters instance with a modulus of key_size bits.
"""
@abc.abstractmethod
def generate_dsa_private_key(self, parameters):
"""
Generate a DSAPrivateKey instance with parameters as a DSAParameters
object.
"""
@abc.abstractmethod
def generate_dsa_private_key_and_parameters(self, key_size):
"""
Generate a DSAPrivateKey instance using key size only.
"""
@abc.abstractmethod
def dsa_hash_supported(self, algorithm):
"""
Return True if the hash algorithm is supported by the backend for DSA.
"""
@abc.abstractmethod
def dsa_parameters_supported(self, p, q, g):
"""
Return True if the parameters are supported by the backend for DSA.
"""
@abc.abstractmethod
def load_dsa_private_numbers(self, numbers):
"""
Returns a DSAPrivateKey provider.
"""
@abc.abstractmethod
def load_dsa_public_numbers(self, numbers):
"""
Returns a DSAPublicKey provider.
"""
@abc.abstractmethod
def load_dsa_parameter_numbers(self, numbers):
"""
Returns a DSAParameters provider.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurveBackend(object):
@abc.abstractmethod
def elliptic_curve_signature_algorithm_supported(
self, signature_algorithm, curve
):
"""
Returns True if the backend supports the named elliptic curve with the
specified signature algorithm.
"""
@abc.abstractmethod
def elliptic_curve_supported(self, curve):
"""
Returns True if the backend supports the named elliptic curve.
"""
@abc.abstractmethod
def generate_elliptic_curve_private_key(self, curve):
"""
Return an object conforming to the EllipticCurvePrivateKey interface.
"""
@abc.abstractmethod
def load_elliptic_curve_public_numbers(self, numbers):
"""
Return an EllipticCurvePublicKey provider using the given numbers.
"""
@abc.abstractmethod
def load_elliptic_curve_private_numbers(self, numbers):
"""
Return an EllipticCurvePrivateKey provider using the given numbers.
"""
@abc.abstractmethod
def elliptic_curve_exchange_algorithm_supported(self, algorithm, curve):
"""
Returns whether the exchange algorithm is supported by this backend.
"""
@six.add_metaclass(abc.ABCMeta)
class PEMSerializationBackend(object):
@abc.abstractmethod
def load_pem_private_key(self, data, password):
"""
Loads a private key from PEM encoded data, using the provided password
if the data is encrypted.
"""
@abc.abstractmethod
def load_pem_public_key(self, data):
"""
Loads a public key from PEM encoded data.
"""
@six.add_metaclass(abc.ABCMeta)
class DERSerializationBackend(object):
@abc.abstractmethod
def load_der_private_key(self, data, password):
"""
Loads a private key from DER encoded data. Uses the provided password
if the data is encrypted.
"""
@abc.abstractmethod
def load_der_public_key(self, data):
"""
Loads a public key from DER encoded data.
"""
@six.add_metaclass(abc.ABCMeta)
class X509Backend(object):
@abc.abstractmethod
def load_pem_x509_certificate(self, data):
"""
Load an X.509 certificate from PEM encoded data.
"""
@abc.abstractmethod
def load_der_x509_certificate(self, data):
"""
Load an X.509 certificate from DER encoded data.
"""
@abc.abstractmethod
def load_der_x509_csr(self, data):
"""
Load an X.509 CSR from DER encoded data.
"""
@abc.abstractmethod
def load_pem_x509_csr(self, data):
"""
Load an X.509 CSR from PEM encoded data.
"""
@abc.abstractmethod
def create_x509_csr(self, builder, private_key, algorithm):
"""
Create and sign an X.509 CSR from a CSR builder object.
"""
@abc.abstractmethod
def create_x509_certificate(self, builder, private_key, algorithm):
"""
Create and sign an X.509 certificate from a CertificateBuilder object.
"""
@abc.abstractmethod
def create_x509_crl(self, builder, private_key, algorithm):
"""
Create and sign an X.509 CertificateRevocationList from a
CertificateRevocationListBuilder object.
"""
@abc.abstractmethod
def create_x509_revoked_certificate(self, builder):
"""
Create a RevokedCertificate object from a RevokedCertificateBuilder
object.
"""
@six.add_metaclass(abc.ABCMeta)
class DHBackend(object):
@abc.abstractmethod
def generate_dh_parameters(self, key_size):
"""
Generate a DHParameters instance with a modulus of key_size bits.
"""
@abc.abstractmethod
def generate_dh_private_key(self, parameters):
"""
Generate a DHPrivateKey instance with parameters as a DHParameters
object.
"""
@abc.abstractmethod
def generate_dh_private_key_and_parameters(self, key_size):
"""
Generate a DHPrivateKey instance using key size only.
"""
@abc.abstractmethod
def load_dh_private_numbers(self, numbers):
"""
Returns a DHPrivateKey provider.
"""
@abc.abstractmethod
def load_dh_public_numbers(self, numbers):
"""
Returns a DHPublicKey provider.
"""
@abc.abstractmethod
def load_dh_parameter_numbers(self, numbers):
"""
Returns a DHParameters provider.
"""
@abc.abstractmethod
def dh_exchange_algorithm_supported(self, exchange_algorithm):
"""
Returns whether the exchange algorithm is supported by this backend.
"""
@abc.abstractmethod
def dh_parameters_supported(self, p, g):
"""
Returns whether the backend supports DH with these parameter values.
"""

View file

@ -0,0 +1,411 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.backends.interfaces import (
CMACBackend, CipherBackend, DERSerializationBackend, DSABackend,
EllipticCurveBackend, HMACBackend, HashBackend, PBKDF2HMACBackend,
PEMSerializationBackend, RSABackend, X509Backend
)
@utils.register_interface(CMACBackend)
@utils.register_interface(CipherBackend)
@utils.register_interface(DERSerializationBackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
@utils.register_interface(RSABackend)
@utils.register_interface(DSABackend)
@utils.register_interface(EllipticCurveBackend)
@utils.register_interface(PEMSerializationBackend)
@utils.register_interface(X509Backend)
class MultiBackend(object):
name = "multibackend"
def __init__(self, backends):
if len(backends) == 0:
raise ValueError(
"Multibackend cannot be initialized with no backends. If you "
"are seeing this error when trying to use default_backend() "
"please try uninstalling and reinstalling cryptography."
)
self._backends = backends
def _filtered_backends(self, interface):
for b in self._backends:
if isinstance(b, interface):
yield b
def cipher_supported(self, cipher, mode):
return any(
b.cipher_supported(cipher, mode)
for b in self._filtered_backends(CipherBackend)
)
def create_symmetric_encryption_ctx(self, cipher, mode):
for b in self._filtered_backends(CipherBackend):
try:
return b.create_symmetric_encryption_ctx(cipher, mode)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
def create_symmetric_decryption_ctx(self, cipher, mode):
for b in self._filtered_backends(CipherBackend):
try:
return b.create_symmetric_decryption_ctx(cipher, mode)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
def hash_supported(self, algorithm):
return any(
b.hash_supported(algorithm)
for b in self._filtered_backends(HashBackend)
)
def create_hash_ctx(self, algorithm):
for b in self._filtered_backends(HashBackend):
try:
return b.create_hash_ctx(algorithm)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
def hmac_supported(self, algorithm):
return any(
b.hmac_supported(algorithm)
for b in self._filtered_backends(HMACBackend)
)
def create_hmac_ctx(self, key, algorithm):
for b in self._filtered_backends(HMACBackend):
try:
return b.create_hmac_ctx(key, algorithm)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
def pbkdf2_hmac_supported(self, algorithm):
return any(
b.pbkdf2_hmac_supported(algorithm)
for b in self._filtered_backends(PBKDF2HMACBackend)
)
def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
key_material):
for b in self._filtered_backends(PBKDF2HMACBackend):
try:
return b.derive_pbkdf2_hmac(
algorithm, length, salt, iterations, key_material
)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
def generate_rsa_private_key(self, public_exponent, key_size):
for b in self._filtered_backends(RSABackend):
return b.generate_rsa_private_key(public_exponent, key_size)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_rsa_parameters_supported(self, public_exponent, key_size):
for b in self._filtered_backends(RSABackend):
return b.generate_rsa_parameters_supported(
public_exponent, key_size
)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def rsa_padding_supported(self, padding):
for b in self._filtered_backends(RSABackend):
return b.rsa_padding_supported(padding)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def load_rsa_private_numbers(self, numbers):
for b in self._filtered_backends(RSABackend):
return b.load_rsa_private_numbers(numbers)
raise UnsupportedAlgorithm("RSA is not supported by the backend",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def load_rsa_public_numbers(self, numbers):
for b in self._filtered_backends(RSABackend):
return b.load_rsa_public_numbers(numbers)
raise UnsupportedAlgorithm("RSA is not supported by the backend",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_dsa_parameters(self, key_size):
for b in self._filtered_backends(DSABackend):
return b.generate_dsa_parameters(key_size)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_dsa_private_key(self, parameters):
for b in self._filtered_backends(DSABackend):
return b.generate_dsa_private_key(parameters)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_dsa_private_key_and_parameters(self, key_size):
for b in self._filtered_backends(DSABackend):
return b.generate_dsa_private_key_and_parameters(key_size)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def dsa_hash_supported(self, algorithm):
for b in self._filtered_backends(DSABackend):
return b.dsa_hash_supported(algorithm)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def dsa_parameters_supported(self, p, q, g):
for b in self._filtered_backends(DSABackend):
return b.dsa_parameters_supported(p, q, g)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def load_dsa_public_numbers(self, numbers):
for b in self._filtered_backends(DSABackend):
return b.load_dsa_public_numbers(numbers)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def load_dsa_private_numbers(self, numbers):
for b in self._filtered_backends(DSABackend):
return b.load_dsa_private_numbers(numbers)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def load_dsa_parameter_numbers(self, numbers):
for b in self._filtered_backends(DSABackend):
return b.load_dsa_parameter_numbers(numbers)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def cmac_algorithm_supported(self, algorithm):
return any(
b.cmac_algorithm_supported(algorithm)
for b in self._filtered_backends(CMACBackend)
)
def create_cmac_ctx(self, algorithm):
for b in self._filtered_backends(CMACBackend):
try:
return b.create_cmac_ctx(algorithm)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm("This backend does not support CMAC.",
_Reasons.UNSUPPORTED_CIPHER)
def elliptic_curve_supported(self, curve):
return any(
b.elliptic_curve_supported(curve)
for b in self._filtered_backends(EllipticCurveBackend)
)
def elliptic_curve_signature_algorithm_supported(
self, signature_algorithm, curve
):
return any(
b.elliptic_curve_signature_algorithm_supported(
signature_algorithm, curve
)
for b in self._filtered_backends(EllipticCurveBackend)
)
def generate_elliptic_curve_private_key(self, curve):
for b in self._filtered_backends(EllipticCurveBackend):
try:
return b.generate_elliptic_curve_private_key(curve)
except UnsupportedAlgorithm:
continue
raise UnsupportedAlgorithm(
"This backend does not support this elliptic curve.",
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
def load_elliptic_curve_private_numbers(self, numbers):
for b in self._filtered_backends(EllipticCurveBackend):
try:
return b.load_elliptic_curve_private_numbers(numbers)
except UnsupportedAlgorithm:
continue
raise UnsupportedAlgorithm(
"This backend does not support this elliptic curve.",
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
def load_elliptic_curve_public_numbers(self, numbers):
for b in self._filtered_backends(EllipticCurveBackend):
try:
return b.load_elliptic_curve_public_numbers(numbers)
except UnsupportedAlgorithm:
continue
raise UnsupportedAlgorithm(
"This backend does not support this elliptic curve.",
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
def elliptic_curve_exchange_algorithm_supported(self, algorithm, curve):
return any(
b.elliptic_curve_exchange_algorithm_supported(algorithm, curve)
for b in self._filtered_backends(EllipticCurveBackend)
)
def load_pem_private_key(self, data, password):
for b in self._filtered_backends(PEMSerializationBackend):
return b.load_pem_private_key(data, password)
raise UnsupportedAlgorithm(
"This backend does not support this key serialization.",
_Reasons.UNSUPPORTED_SERIALIZATION
)
def load_pem_public_key(self, data):
for b in self._filtered_backends(PEMSerializationBackend):
return b.load_pem_public_key(data)
raise UnsupportedAlgorithm(
"This backend does not support this key serialization.",
_Reasons.UNSUPPORTED_SERIALIZATION
)
def load_der_private_key(self, data, password):
for b in self._filtered_backends(DERSerializationBackend):
return b.load_der_private_key(data, password)
raise UnsupportedAlgorithm(
"This backend does not support this key serialization.",
_Reasons.UNSUPPORTED_SERIALIZATION
)
def load_der_public_key(self, data):
for b in self._filtered_backends(DERSerializationBackend):
return b.load_der_public_key(data)
raise UnsupportedAlgorithm(
"This backend does not support this key serialization.",
_Reasons.UNSUPPORTED_SERIALIZATION
)
def load_pem_x509_certificate(self, data):
for b in self._filtered_backends(X509Backend):
return b.load_pem_x509_certificate(data)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def load_der_x509_certificate(self, data):
for b in self._filtered_backends(X509Backend):
return b.load_der_x509_certificate(data)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def load_pem_x509_crl(self, data):
for b in self._filtered_backends(X509Backend):
return b.load_pem_x509_crl(data)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def load_der_x509_crl(self, data):
for b in self._filtered_backends(X509Backend):
return b.load_der_x509_crl(data)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def load_der_x509_csr(self, data):
for b in self._filtered_backends(X509Backend):
return b.load_der_x509_csr(data)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def load_pem_x509_csr(self, data):
for b in self._filtered_backends(X509Backend):
return b.load_pem_x509_csr(data)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def create_x509_csr(self, builder, private_key, algorithm):
for b in self._filtered_backends(X509Backend):
return b.create_x509_csr(builder, private_key, algorithm)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def create_x509_certificate(self, builder, private_key, algorithm):
for b in self._filtered_backends(X509Backend):
return b.create_x509_certificate(builder, private_key, algorithm)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def create_x509_crl(self, builder, private_key, algorithm):
for b in self._filtered_backends(X509Backend):
return b.create_x509_crl(builder, private_key, algorithm)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)
def create_x509_revoked_certificate(self, builder):
for b in self._filtered_backends(X509Backend):
return b.create_x509_revoked_certificate(builder)
raise UnsupportedAlgorithm(
"This backend does not support X.509.",
_Reasons.UNSUPPORTED_X509
)

View file

@ -0,0 +1,10 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.backends.openssl.backend import backend
__all__ = ["backend"]

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,213 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import InvalidTag, UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import ciphers
from cryptography.hazmat.primitives.ciphers import modes
@utils.register_interface(ciphers.CipherContext)
@utils.register_interface(ciphers.AEADCipherContext)
@utils.register_interface(ciphers.AEADEncryptionContext)
class _CipherContext(object):
_ENCRYPT = 1
_DECRYPT = 0
def __init__(self, backend, cipher, mode, operation):
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
self._tag = None
if isinstance(self._cipher, ciphers.BlockCipherAlgorithm):
self._block_size = self._cipher.block_size
else:
self._block_size = 1
ctx = self._backend._lib.EVP_CIPHER_CTX_new()
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.EVP_CIPHER_CTX_free
)
registry = self._backend._cipher_registry
try:
adapter = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
evp_cipher = adapter(self._backend, cipher, mode)
if evp_cipher == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
if isinstance(mode, modes.ModeWithInitializationVector):
iv_nonce = mode.initialization_vector
elif isinstance(mode, modes.ModeWithNonce):
iv_nonce = mode.nonce
else:
iv_nonce = self._backend._ffi.NULL
# begin init with cipher and operation type
res = self._backend._lib.EVP_CipherInit_ex(ctx, evp_cipher,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
operation)
self._backend.openssl_assert(res != 0)
# set the key length to handle variable key ciphers
res = self._backend._lib.EVP_CIPHER_CTX_set_key_length(
ctx, len(cipher.key)
)
self._backend.openssl_assert(res != 0)
if isinstance(mode, modes.GCM):
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, self._backend._lib.EVP_CTRL_GCM_SET_IVLEN,
len(iv_nonce), self._backend._ffi.NULL
)
self._backend.openssl_assert(res != 0)
if operation == self._DECRYPT:
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, self._backend._lib.EVP_CTRL_GCM_SET_TAG,
len(mode.tag), mode.tag
)
self._backend.openssl_assert(res != 0)
# pass key/iv
res = self._backend._lib.EVP_CipherInit_ex(
ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
cipher.key,
iv_nonce,
operation
)
self._backend.openssl_assert(res != 0)
# We purposely disable padding here as it's handled higher up in the
# API.
self._backend._lib.EVP_CIPHER_CTX_set_padding(ctx, 0)
self._ctx = ctx
def update(self, data):
# OpenSSL 0.9.8e has an assertion in its EVP code that causes it
# to SIGABRT if you call update with an empty byte string. This can be
# removed when we drop support for 0.9.8e (CentOS/RHEL 5). This branch
# should be taken only when length is zero and mode is not GCM because
# AES GCM can return improper tag values if you don't call update
# with empty plaintext when authenticating AAD for ...reasons.
if len(data) == 0 and not isinstance(self._mode, modes.GCM):
return b""
buf = self._backend._ffi.new("unsigned char[]",
len(data) + self._block_size - 1)
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherUpdate(self._ctx, buf, outlen, data,
len(data))
self._backend.openssl_assert(res != 0)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def finalize(self):
# OpenSSL 1.0.1 on Ubuntu 12.04 (and possibly other distributions)
# appears to have a bug where you must make at least one call to update
# even if you are only using authenticate_additional_data or the
# GCM tag will be wrong. An (empty) call to update resolves this
# and is harmless for all other versions of OpenSSL.
if isinstance(self._mode, modes.GCM):
self.update(b"")
buf = self._backend._ffi.new("unsigned char[]", self._block_size)
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherFinal_ex(self._ctx, buf, outlen)
if res == 0:
errors = self._backend._consume_errors()
if not errors and isinstance(self._mode, modes.GCM):
raise InvalidTag
self._backend.openssl_assert(
errors[0][1:] == (
self._backend._lib.ERR_LIB_EVP,
self._backend._lib.EVP_F_EVP_ENCRYPTFINAL_EX,
self._backend._lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
) or errors[0][1:] == (
self._backend._lib.ERR_LIB_EVP,
self._backend._lib.EVP_F_EVP_DECRYPTFINAL_EX,
self._backend._lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
)
)
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
if (isinstance(self._mode, modes.GCM) and
self._operation == self._ENCRYPT):
block_byte_size = self._block_size // 8
tag_buf = self._backend._ffi.new(
"unsigned char[]", block_byte_size
)
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
self._ctx, self._backend._lib.EVP_CTRL_GCM_GET_TAG,
block_byte_size, tag_buf
)
self._backend.openssl_assert(res != 0)
self._tag = self._backend._ffi.buffer(tag_buf)[:]
res = self._backend._lib.EVP_CIPHER_CTX_cleanup(self._ctx)
self._backend.openssl_assert(res == 1)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def authenticate_additional_data(self, data):
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherUpdate(
self._ctx, self._backend._ffi.NULL, outlen, data, len(data)
)
self._backend.openssl_assert(res != 0)
tag = utils.read_only_property("_tag")
@utils.register_interface(ciphers.CipherContext)
class _AESCTRCipherContext(object):
"""
This is needed to provide support for AES CTR mode in OpenSSL 0.9.8. It can
be removed when we drop 0.9.8 support (RHEL5 extended life ends 2020).
"""
def __init__(self, backend, cipher, mode):
self._backend = backend
self._key = self._backend._ffi.new("AES_KEY *")
res = self._backend._lib.AES_set_encrypt_key(
cipher.key, len(cipher.key) * 8, self._key
)
self._backend.openssl_assert(res == 0)
self._ecount = self._backend._ffi.new("char[]", 16)
self._nonce = self._backend._ffi.new("char[16]", mode.nonce)
self._num = self._backend._ffi.new("unsigned int *", 0)
def update(self, data):
buf = self._backend._ffi.new("unsigned char[]", len(data))
self._backend._lib.AES_ctr128_encrypt(
data, buf, len(data), self._key, self._nonce,
self._ecount, self._num
)
return self._backend._ffi.buffer(buf)[:]
def finalize(self):
self._key = None
self._ecount = None
self._nonce = None
self._num = None
return b""

View file

@ -0,0 +1,80 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import constant_time, interfaces
from cryptography.hazmat.primitives.ciphers.modes import CBC
@utils.register_interface(interfaces.MACContext)
class _CMACContext(object):
def __init__(self, backend, algorithm, ctx=None):
if not backend.cmac_algorithm_supported(algorithm):
raise UnsupportedAlgorithm("This backend does not support CMAC.",
_Reasons.UNSUPPORTED_CIPHER)
self._backend = backend
self._key = algorithm.key
self._algorithm = algorithm
self._output_length = algorithm.block_size // 8
if ctx is None:
registry = self._backend._cipher_registry
adapter = registry[type(algorithm), CBC]
evp_cipher = adapter(self._backend, algorithm, CBC)
ctx = self._backend._lib.CMAC_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.CMAC_CTX_free)
self._backend._lib.CMAC_Init(
ctx, self._key, len(self._key),
evp_cipher, self._backend._ffi.NULL
)
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def update(self, data):
res = self._backend._lib.CMAC_Update(self._ctx, data, len(data))
self._backend.openssl_assert(res == 1)
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]", self._output_length)
length = self._backend._ffi.new("size_t *", self._output_length)
res = self._backend._lib.CMAC_Final(
self._ctx, buf, length
)
self._backend.openssl_assert(res == 1)
self._ctx = None
return self._backend._ffi.buffer(buf)[:]
def copy(self):
copied_ctx = self._backend._lib.CMAC_CTX_new()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.CMAC_CTX_free
)
res = self._backend._lib.CMAC_CTX_copy(
copied_ctx, self._ctx
)
self._backend.openssl_assert(res == 1)
return _CMACContext(
self._backend, self._algorithm, ctx=copied_ctx
)
def verify(self, signature):
digest = self.finalize()
if not constant_time.bytes_eq(digest, signature):
raise InvalidSignature("Signature did not match digest.")

View file

@ -0,0 +1,804 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import datetime
import ipaddress
from email.utils import parseaddr
import idna
import six
from six.moves import urllib_parse
from cryptography import x509
from cryptography.x509.oid import (
CRLEntryExtensionOID, CertificatePoliciesOID, ExtensionOID
)
def _obj2txt(backend, obj):
# Set to 80 on the recommendation of
# https://www.openssl.org/docs/crypto/OBJ_nid2ln.html#return_values
buf_len = 80
buf = backend._ffi.new("char[]", buf_len)
res = backend._lib.OBJ_obj2txt(buf, buf_len, obj, 1)
backend.openssl_assert(res > 0)
return backend._ffi.buffer(buf, res)[:].decode()
def _decode_x509_name_entry(backend, x509_name_entry):
obj = backend._lib.X509_NAME_ENTRY_get_object(x509_name_entry)
backend.openssl_assert(obj != backend._ffi.NULL)
data = backend._lib.X509_NAME_ENTRY_get_data(x509_name_entry)
backend.openssl_assert(data != backend._ffi.NULL)
value = _asn1_string_to_utf8(backend, data)
oid = _obj2txt(backend, obj)
return x509.NameAttribute(x509.ObjectIdentifier(oid), value)
def _decode_x509_name(backend, x509_name):
count = backend._lib.X509_NAME_entry_count(x509_name)
attributes = []
for x in range(count):
entry = backend._lib.X509_NAME_get_entry(x509_name, x)
attributes.append(_decode_x509_name_entry(backend, entry))
return x509.Name(attributes)
def _decode_general_names(backend, gns):
num = backend._lib.sk_GENERAL_NAME_num(gns)
names = []
for i in range(num):
gn = backend._lib.sk_GENERAL_NAME_value(gns, i)
backend.openssl_assert(gn != backend._ffi.NULL)
names.append(_decode_general_name(backend, gn))
return names
def _decode_general_name(backend, gn):
if gn.type == backend._lib.GEN_DNS:
data = _asn1_string_to_bytes(backend, gn.d.dNSName)
if not data:
decoded = u""
elif data.startswith(b"*."):
# This is a wildcard name. We need to remove the leading wildcard,
# IDNA decode, then re-add the wildcard. Wildcard characters should
# always be left-most (RFC 2595 section 2.4).
decoded = u"*." + idna.decode(data[2:])
else:
# Not a wildcard, decode away. If the string has a * in it anywhere
# invalid this will raise an InvalidCodePoint
decoded = idna.decode(data)
if data.startswith(b"."):
# idna strips leading periods. Name constraints can have that
# so we need to re-add it. Sigh.
decoded = u"." + decoded
return x509.DNSName(decoded)
elif gn.type == backend._lib.GEN_URI:
data = _asn1_string_to_ascii(backend, gn.d.uniformResourceIdentifier)
parsed = urllib_parse.urlparse(data)
if parsed.hostname:
hostname = idna.decode(parsed.hostname)
else:
hostname = ""
if parsed.port:
netloc = hostname + u":" + six.text_type(parsed.port)
else:
netloc = hostname
# Note that building a URL in this fashion means it should be
# semantically indistinguishable from the original but is not
# guaranteed to be exactly the same.
uri = urllib_parse.urlunparse((
parsed.scheme,
netloc,
parsed.path,
parsed.params,
parsed.query,
parsed.fragment
))
return x509.UniformResourceIdentifier(uri)
elif gn.type == backend._lib.GEN_RID:
oid = _obj2txt(backend, gn.d.registeredID)
return x509.RegisteredID(x509.ObjectIdentifier(oid))
elif gn.type == backend._lib.GEN_IPADD:
data = _asn1_string_to_bytes(backend, gn.d.iPAddress)
data_len = len(data)
if data_len == 8 or data_len == 32:
# This is an IPv4 or IPv6 Network and not a single IP. This
# type of data appears in Name Constraints. Unfortunately,
# ipaddress doesn't support packed bytes + netmask. Additionally,
# IPv6Network can only handle CIDR rather than the full 16 byte
# netmask. To handle this we convert the netmask to integer, then
# find the first 0 bit, which will be the prefix. If another 1
# bit is present after that the netmask is invalid.
base = ipaddress.ip_address(data[:data_len // 2])
netmask = ipaddress.ip_address(data[data_len // 2:])
bits = bin(int(netmask))[2:]
prefix = bits.find('0')
# If no 0 bits are found it is a /32 or /128
if prefix == -1:
prefix = len(bits)
if "1" in bits[prefix:]:
raise ValueError("Invalid netmask")
ip = ipaddress.ip_network(base.exploded + u"/{0}".format(prefix))
else:
ip = ipaddress.ip_address(data)
return x509.IPAddress(ip)
elif gn.type == backend._lib.GEN_DIRNAME:
return x509.DirectoryName(
_decode_x509_name(backend, gn.d.directoryName)
)
elif gn.type == backend._lib.GEN_EMAIL:
data = _asn1_string_to_ascii(backend, gn.d.rfc822Name)
name, address = parseaddr(data)
parts = address.split(u"@")
if name or not address:
# parseaddr has found a name (e.g. Name <email>) or the entire
# value is an empty string.
raise ValueError("Invalid rfc822name value")
elif len(parts) == 1:
# Single label email name. This is valid for local delivery. No
# IDNA decoding can be done since there is no domain component.
return x509.RFC822Name(address)
else:
# A normal email of the form user@domain.com. Let's attempt to
# decode the domain component and return the entire address.
return x509.RFC822Name(
parts[0] + u"@" + idna.decode(parts[1])
)
elif gn.type == backend._lib.GEN_OTHERNAME:
type_id = _obj2txt(backend, gn.d.otherName.type_id)
value = _asn1_to_der(backend, gn.d.otherName.value)
return x509.OtherName(x509.ObjectIdentifier(type_id), value)
else:
# x400Address or ediPartyName
raise x509.UnsupportedGeneralNameType(
"{0} is not a supported type".format(
x509._GENERAL_NAMES.get(gn.type, gn.type)
),
gn.type
)
def _decode_ocsp_no_check(backend, ext):
return x509.OCSPNoCheck()
def _decode_crl_number(backend, ext):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", ext)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
return x509.CRLNumber(_asn1_integer_to_int(backend, asn1_int))
class _X509ExtensionParser(object):
def __init__(self, ext_count, get_ext, handlers, unsupported_exts=None):
self.ext_count = ext_count
self.get_ext = get_ext
self.handlers = handlers
self.unsupported_exts = unsupported_exts
def parse(self, backend, x509_obj):
extensions = []
seen_oids = set()
for i in range(self.ext_count(backend, x509_obj)):
ext = self.get_ext(backend, x509_obj, i)
backend.openssl_assert(ext != backend._ffi.NULL)
crit = backend._lib.X509_EXTENSION_get_critical(ext)
critical = crit == 1
oid = x509.ObjectIdentifier(
_obj2txt(backend, backend._lib.X509_EXTENSION_get_object(ext))
)
if oid in seen_oids:
raise x509.DuplicateExtension(
"Duplicate {0} extension found".format(oid), oid
)
try:
handler = self.handlers[oid]
except KeyError:
if critical:
raise x509.UnsupportedExtension(
"Critical extension {0} is not currently supported"
.format(oid), oid
)
else:
# Dump the DER payload into an UnrecognizedExtension object
data = backend._lib.X509_EXTENSION_get_data(ext)
backend.openssl_assert(data != backend._ffi.NULL)
der = backend._ffi.buffer(data.data, data.length)[:]
unrecognized = x509.UnrecognizedExtension(oid, der)
extensions.append(
x509.Extension(oid, critical, unrecognized)
)
else:
# For extensions which are not supported by OpenSSL we pass the
# extension object directly to the parsing routine so it can
# be decoded manually.
if self.unsupported_exts and oid in self.unsupported_exts:
ext_data = ext
else:
ext_data = backend._lib.X509V3_EXT_d2i(ext)
if ext_data == backend._ffi.NULL:
backend._consume_errors()
raise ValueError(
"The {0} extension is invalid and can't be "
"parsed".format(oid)
)
value = handler(backend, ext_data)
extensions.append(x509.Extension(oid, critical, value))
seen_oids.add(oid)
return x509.Extensions(extensions)
def _decode_certificate_policies(backend, cp):
cp = backend._ffi.cast("Cryptography_STACK_OF_POLICYINFO *", cp)
cp = backend._ffi.gc(cp, backend._lib.sk_POLICYINFO_free)
num = backend._lib.sk_POLICYINFO_num(cp)
certificate_policies = []
for i in range(num):
qualifiers = None
pi = backend._lib.sk_POLICYINFO_value(cp, i)
oid = x509.ObjectIdentifier(_obj2txt(backend, pi.policyid))
if pi.qualifiers != backend._ffi.NULL:
qnum = backend._lib.sk_POLICYQUALINFO_num(pi.qualifiers)
qualifiers = []
for j in range(qnum):
pqi = backend._lib.sk_POLICYQUALINFO_value(
pi.qualifiers, j
)
pqualid = x509.ObjectIdentifier(
_obj2txt(backend, pqi.pqualid)
)
if pqualid == CertificatePoliciesOID.CPS_QUALIFIER:
cpsuri = backend._ffi.buffer(
pqi.d.cpsuri.data, pqi.d.cpsuri.length
)[:].decode('ascii')
qualifiers.append(cpsuri)
else:
assert pqualid == CertificatePoliciesOID.CPS_USER_NOTICE
user_notice = _decode_user_notice(
backend, pqi.d.usernotice
)
qualifiers.append(user_notice)
certificate_policies.append(
x509.PolicyInformation(oid, qualifiers)
)
return x509.CertificatePolicies(certificate_policies)
def _decode_user_notice(backend, un):
explicit_text = None
notice_reference = None
if un.exptext != backend._ffi.NULL:
explicit_text = _asn1_string_to_utf8(backend, un.exptext)
if un.noticeref != backend._ffi.NULL:
organization = _asn1_string_to_utf8(
backend, un.noticeref.organization
)
num = backend._lib.sk_ASN1_INTEGER_num(
un.noticeref.noticenos
)
notice_numbers = []
for i in range(num):
asn1_int = backend._lib.sk_ASN1_INTEGER_value(
un.noticeref.noticenos, i
)
notice_num = _asn1_integer_to_int(backend, asn1_int)
notice_numbers.append(notice_num)
notice_reference = x509.NoticeReference(
organization, notice_numbers
)
return x509.UserNotice(notice_reference, explicit_text)
def _decode_basic_constraints(backend, bc_st):
basic_constraints = backend._ffi.cast("BASIC_CONSTRAINTS *", bc_st)
basic_constraints = backend._ffi.gc(
basic_constraints, backend._lib.BASIC_CONSTRAINTS_free
)
# The byte representation of an ASN.1 boolean true is \xff. OpenSSL
# chooses to just map this to its ordinal value, so true is 255 and
# false is 0.
ca = basic_constraints.ca == 255
path_length = _asn1_integer_to_int_or_none(
backend, basic_constraints.pathlen
)
return x509.BasicConstraints(ca, path_length)
def _decode_subject_key_identifier(backend, asn1_string):
asn1_string = backend._ffi.cast("ASN1_OCTET_STRING *", asn1_string)
asn1_string = backend._ffi.gc(
asn1_string, backend._lib.ASN1_OCTET_STRING_free
)
return x509.SubjectKeyIdentifier(
backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
)
def _decode_authority_key_identifier(backend, akid):
akid = backend._ffi.cast("AUTHORITY_KEYID *", akid)
akid = backend._ffi.gc(akid, backend._lib.AUTHORITY_KEYID_free)
key_identifier = None
authority_cert_issuer = None
if akid.keyid != backend._ffi.NULL:
key_identifier = backend._ffi.buffer(
akid.keyid.data, akid.keyid.length
)[:]
if akid.issuer != backend._ffi.NULL:
authority_cert_issuer = _decode_general_names(
backend, akid.issuer
)
authority_cert_serial_number = _asn1_integer_to_int_or_none(
backend, akid.serial
)
return x509.AuthorityKeyIdentifier(
key_identifier, authority_cert_issuer, authority_cert_serial_number
)
def _decode_authority_information_access(backend, aia):
aia = backend._ffi.cast("Cryptography_STACK_OF_ACCESS_DESCRIPTION *", aia)
aia = backend._ffi.gc(aia, backend._lib.sk_ACCESS_DESCRIPTION_free)
num = backend._lib.sk_ACCESS_DESCRIPTION_num(aia)
access_descriptions = []
for i in range(num):
ad = backend._lib.sk_ACCESS_DESCRIPTION_value(aia, i)
backend.openssl_assert(ad.method != backend._ffi.NULL)
oid = x509.ObjectIdentifier(_obj2txt(backend, ad.method))
backend.openssl_assert(ad.location != backend._ffi.NULL)
gn = _decode_general_name(backend, ad.location)
access_descriptions.append(x509.AccessDescription(oid, gn))
return x509.AuthorityInformationAccess(access_descriptions)
def _decode_key_usage(backend, bit_string):
bit_string = backend._ffi.cast("ASN1_BIT_STRING *", bit_string)
bit_string = backend._ffi.gc(bit_string, backend._lib.ASN1_BIT_STRING_free)
get_bit = backend._lib.ASN1_BIT_STRING_get_bit
digital_signature = get_bit(bit_string, 0) == 1
content_commitment = get_bit(bit_string, 1) == 1
key_encipherment = get_bit(bit_string, 2) == 1
data_encipherment = get_bit(bit_string, 3) == 1
key_agreement = get_bit(bit_string, 4) == 1
key_cert_sign = get_bit(bit_string, 5) == 1
crl_sign = get_bit(bit_string, 6) == 1
encipher_only = get_bit(bit_string, 7) == 1
decipher_only = get_bit(bit_string, 8) == 1
return x509.KeyUsage(
digital_signature,
content_commitment,
key_encipherment,
data_encipherment,
key_agreement,
key_cert_sign,
crl_sign,
encipher_only,
decipher_only
)
def _decode_general_names_extension(backend, gns):
gns = backend._ffi.cast("GENERAL_NAMES *", gns)
gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
general_names = _decode_general_names(backend, gns)
return general_names
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_issuer_alt_name(backend, ext):
return x509.IssuerAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_name_constraints(backend, nc):
nc = backend._ffi.cast("NAME_CONSTRAINTS *", nc)
nc = backend._ffi.gc(nc, backend._lib.NAME_CONSTRAINTS_free)
permitted = _decode_general_subtrees(backend, nc.permittedSubtrees)
excluded = _decode_general_subtrees(backend, nc.excludedSubtrees)
return x509.NameConstraints(
permitted_subtrees=permitted, excluded_subtrees=excluded
)
def _decode_general_subtrees(backend, stack_subtrees):
if stack_subtrees == backend._ffi.NULL:
return None
num = backend._lib.sk_GENERAL_SUBTREE_num(stack_subtrees)
subtrees = []
for i in range(num):
obj = backend._lib.sk_GENERAL_SUBTREE_value(stack_subtrees, i)
backend.openssl_assert(obj != backend._ffi.NULL)
name = _decode_general_name(backend, obj.base)
subtrees.append(name)
return subtrees
def _decode_policy_constraints(backend, pc):
pc = backend._ffi.cast("POLICY_CONSTRAINTS *", pc)
pc = backend._ffi.gc(pc, backend._lib.POLICY_CONSTRAINTS_free)
require_explicit_policy = _asn1_integer_to_int_or_none(
backend, pc.requireExplicitPolicy
)
inhibit_policy_mapping = _asn1_integer_to_int_or_none(
backend, pc.inhibitPolicyMapping
)
return x509.PolicyConstraints(
require_explicit_policy, inhibit_policy_mapping
)
def _decode_extended_key_usage(backend, sk):
sk = backend._ffi.cast("Cryptography_STACK_OF_ASN1_OBJECT *", sk)
sk = backend._ffi.gc(sk, backend._lib.sk_ASN1_OBJECT_free)
num = backend._lib.sk_ASN1_OBJECT_num(sk)
ekus = []
for i in range(num):
obj = backend._lib.sk_ASN1_OBJECT_value(sk, i)
backend.openssl_assert(obj != backend._ffi.NULL)
oid = x509.ObjectIdentifier(_obj2txt(backend, obj))
ekus.append(oid)
return x509.ExtendedKeyUsage(ekus)
_DISTPOINT_TYPE_FULLNAME = 0
_DISTPOINT_TYPE_RELATIVENAME = 1
def _decode_crl_distribution_points(backend, cdps):
cdps = backend._ffi.cast("Cryptography_STACK_OF_DIST_POINT *", cdps)
cdps = backend._ffi.gc(cdps, backend._lib.sk_DIST_POINT_free)
num = backend._lib.sk_DIST_POINT_num(cdps)
dist_points = []
for i in range(num):
full_name = None
relative_name = None
crl_issuer = None
reasons = None
cdp = backend._lib.sk_DIST_POINT_value(cdps, i)
if cdp.reasons != backend._ffi.NULL:
# We will check each bit from RFC 5280
# ReasonFlags ::= BIT STRING {
# unused (0),
# keyCompromise (1),
# cACompromise (2),
# affiliationChanged (3),
# superseded (4),
# cessationOfOperation (5),
# certificateHold (6),
# privilegeWithdrawn (7),
# aACompromise (8) }
reasons = []
get_bit = backend._lib.ASN1_BIT_STRING_get_bit
if get_bit(cdp.reasons, 1):
reasons.append(x509.ReasonFlags.key_compromise)
if get_bit(cdp.reasons, 2):
reasons.append(x509.ReasonFlags.ca_compromise)
if get_bit(cdp.reasons, 3):
reasons.append(x509.ReasonFlags.affiliation_changed)
if get_bit(cdp.reasons, 4):
reasons.append(x509.ReasonFlags.superseded)
if get_bit(cdp.reasons, 5):
reasons.append(x509.ReasonFlags.cessation_of_operation)
if get_bit(cdp.reasons, 6):
reasons.append(x509.ReasonFlags.certificate_hold)
if get_bit(cdp.reasons, 7):
reasons.append(x509.ReasonFlags.privilege_withdrawn)
if get_bit(cdp.reasons, 8):
reasons.append(x509.ReasonFlags.aa_compromise)
reasons = frozenset(reasons)
if cdp.CRLissuer != backend._ffi.NULL:
crl_issuer = _decode_general_names(backend, cdp.CRLissuer)
# Certificates may have a crl_issuer/reasons and no distribution
# point so make sure it's not null.
if cdp.distpoint != backend._ffi.NULL:
# Type 0 is fullName, there is no #define for it in the code.
if cdp.distpoint.type == _DISTPOINT_TYPE_FULLNAME:
full_name = _decode_general_names(
backend, cdp.distpoint.name.fullname
)
# OpenSSL code doesn't test for a specific type for
# relativename, everything that isn't fullname is considered
# relativename.
else:
rns = cdp.distpoint.name.relativename
rnum = backend._lib.sk_X509_NAME_ENTRY_num(rns)
attributes = []
for i in range(rnum):
rn = backend._lib.sk_X509_NAME_ENTRY_value(
rns, i
)
backend.openssl_assert(rn != backend._ffi.NULL)
attributes.append(
_decode_x509_name_entry(backend, rn)
)
relative_name = x509.Name(attributes)
dist_points.append(
x509.DistributionPoint(
full_name, relative_name, reasons, crl_issuer
)
)
return x509.CRLDistributionPoints(dist_points)
def _decode_inhibit_any_policy(backend, asn1_int):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", asn1_int)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
skip_certs = _asn1_integer_to_int(backend, asn1_int)
return x509.InhibitAnyPolicy(skip_certs)
# CRLReason ::= ENUMERATED {
# unspecified (0),
# keyCompromise (1),
# cACompromise (2),
# affiliationChanged (3),
# superseded (4),
# cessationOfOperation (5),
# certificateHold (6),
# -- value 7 is not used
# removeFromCRL (8),
# privilegeWithdrawn (9),
# aACompromise (10) }
_CRL_ENTRY_REASON_CODE_TO_ENUM = {
0: x509.ReasonFlags.unspecified,
1: x509.ReasonFlags.key_compromise,
2: x509.ReasonFlags.ca_compromise,
3: x509.ReasonFlags.affiliation_changed,
4: x509.ReasonFlags.superseded,
5: x509.ReasonFlags.cessation_of_operation,
6: x509.ReasonFlags.certificate_hold,
8: x509.ReasonFlags.remove_from_crl,
9: x509.ReasonFlags.privilege_withdrawn,
10: x509.ReasonFlags.aa_compromise,
}
_CRL_ENTRY_REASON_ENUM_TO_CODE = {
x509.ReasonFlags.unspecified: 0,
x509.ReasonFlags.key_compromise: 1,
x509.ReasonFlags.ca_compromise: 2,
x509.ReasonFlags.affiliation_changed: 3,
x509.ReasonFlags.superseded: 4,
x509.ReasonFlags.cessation_of_operation: 5,
x509.ReasonFlags.certificate_hold: 6,
x509.ReasonFlags.remove_from_crl: 8,
x509.ReasonFlags.privilege_withdrawn: 9,
x509.ReasonFlags.aa_compromise: 10
}
def _decode_crl_reason(backend, enum):
enum = backend._ffi.cast("ASN1_ENUMERATED *", enum)
enum = backend._ffi.gc(enum, backend._lib.ASN1_ENUMERATED_free)
code = backend._lib.ASN1_ENUMERATED_get(enum)
try:
return x509.CRLReason(_CRL_ENTRY_REASON_CODE_TO_ENUM[code])
except KeyError:
raise ValueError("Unsupported reason code: {0}".format(code))
def _decode_invalidity_date(backend, inv_date):
generalized_time = backend._ffi.cast(
"ASN1_GENERALIZEDTIME *", inv_date
)
generalized_time = backend._ffi.gc(
generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
)
return x509.InvalidityDate(
_parse_asn1_generalized_time(backend, generalized_time)
)
def _decode_cert_issuer(backend, ext):
"""
This handler decodes the CertificateIssuer entry extension directly
from the X509_EXTENSION object. This is necessary because this entry
extension is not directly supported by OpenSSL 0.9.8.
"""
data_ptr_ptr = backend._ffi.new("const unsigned char **")
value = backend._lib.X509_EXTENSION_get_data(ext)
data_ptr_ptr[0] = value.data
gns = backend._lib.d2i_GENERAL_NAMES(
backend._ffi.NULL, data_ptr_ptr, value.length
)
# Check the result of d2i_GENERAL_NAMES() is valid. Usually this is covered
# in _X509ExtensionParser but since we are responsible for decoding this
# entry extension ourselves, we have to this here.
if gns == backend._ffi.NULL:
backend._consume_errors()
raise ValueError(
"The {0} extension is corrupted and can't be parsed".format(
CRLEntryExtensionOID.CERTIFICATE_ISSUER))
gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
return x509.CertificateIssuer(_decode_general_names(backend, gns))
def _asn1_to_der(backend, asn1_type):
buf = backend._ffi.new("unsigned char **")
res = backend._lib.i2d_ASN1_TYPE(asn1_type, buf)
backend.openssl_assert(res >= 0)
backend.openssl_assert(buf[0] != backend._ffi.NULL)
buf = backend._ffi.gc(
buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
)
return backend._ffi.buffer(buf[0], res)[:]
def _asn1_integer_to_int(backend, asn1_int):
bn = backend._lib.ASN1_INTEGER_to_BN(asn1_int, backend._ffi.NULL)
backend.openssl_assert(bn != backend._ffi.NULL)
bn = backend._ffi.gc(bn, backend._lib.BN_free)
return backend._bn_to_int(bn)
def _asn1_integer_to_int_or_none(backend, asn1_int):
if asn1_int == backend._ffi.NULL:
return None
else:
return _asn1_integer_to_int(backend, asn1_int)
def _asn1_string_to_bytes(backend, asn1_string):
return backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
def _asn1_string_to_ascii(backend, asn1_string):
return _asn1_string_to_bytes(backend, asn1_string).decode("ascii")
def _asn1_string_to_utf8(backend, asn1_string):
buf = backend._ffi.new("unsigned char **")
res = backend._lib.ASN1_STRING_to_UTF8(buf, asn1_string)
if res == -1:
raise ValueError(
"Unsupported ASN1 string type. Type: {0}".format(asn1_string.type)
)
backend.openssl_assert(buf[0] != backend._ffi.NULL)
buf = backend._ffi.gc(
buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
)
return backend._ffi.buffer(buf[0], res)[:].decode('utf8')
def _parse_asn1_time(backend, asn1_time):
backend.openssl_assert(asn1_time != backend._ffi.NULL)
generalized_time = backend._lib.ASN1_TIME_to_generalizedtime(
asn1_time, backend._ffi.NULL
)
backend.openssl_assert(generalized_time != backend._ffi.NULL)
generalized_time = backend._ffi.gc(
generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
)
return _parse_asn1_generalized_time(backend, generalized_time)
def _parse_asn1_generalized_time(backend, generalized_time):
time = _asn1_string_to_ascii(
backend, backend._ffi.cast("ASN1_STRING *", generalized_time)
)
return datetime.datetime.strptime(time, "%Y%m%d%H%M%SZ")
_EXTENSION_HANDLERS = {
ExtensionOID.BASIC_CONSTRAINTS: _decode_basic_constraints,
ExtensionOID.SUBJECT_KEY_IDENTIFIER: _decode_subject_key_identifier,
ExtensionOID.KEY_USAGE: _decode_key_usage,
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: _decode_subject_alt_name,
ExtensionOID.EXTENDED_KEY_USAGE: _decode_extended_key_usage,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_decode_authority_information_access
),
ExtensionOID.CERTIFICATE_POLICIES: _decode_certificate_policies,
ExtensionOID.CRL_DISTRIBUTION_POINTS: _decode_crl_distribution_points,
ExtensionOID.OCSP_NO_CHECK: _decode_ocsp_no_check,
ExtensionOID.INHIBIT_ANY_POLICY: _decode_inhibit_any_policy,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
ExtensionOID.NAME_CONSTRAINTS: _decode_name_constraints,
ExtensionOID.POLICY_CONSTRAINTS: _decode_policy_constraints,
}
_REVOKED_EXTENSION_HANDLERS = {
CRLEntryExtensionOID.CRL_REASON: _decode_crl_reason,
CRLEntryExtensionOID.INVALIDITY_DATE: _decode_invalidity_date,
CRLEntryExtensionOID.CERTIFICATE_ISSUER: _decode_cert_issuer,
}
_REVOKED_UNSUPPORTED_EXTENSIONS = set([
CRLEntryExtensionOID.CERTIFICATE_ISSUER,
])
_CRL_EXTENSION_HANDLERS = {
ExtensionOID.CRL_NUMBER: _decode_crl_number,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_decode_authority_information_access
),
}
_CERTIFICATE_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.X509_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.X509_get_ext(x, i),
handlers=_EXTENSION_HANDLERS
)
_CSR_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.sk_X509_EXTENSION_num(x),
get_ext=lambda backend, x, i: backend._lib.sk_X509_EXTENSION_value(x, i),
handlers=_EXTENSION_HANDLERS
)
_REVOKED_CERTIFICATE_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.X509_REVOKED_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.X509_REVOKED_get_ext(x, i),
handlers=_REVOKED_EXTENSION_HANDLERS,
unsupported_exts=_REVOKED_UNSUPPORTED_EXTENSIONS
)
_CRL_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.X509_CRL_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.X509_CRL_get_ext(x, i),
handlers=_CRL_EXTENSION_HANDLERS,
)

View file

@ -0,0 +1,303 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.backends.openssl.utils import _truncate_digest
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext, AsymmetricVerificationContext, dsa
)
def _truncate_digest_for_dsa(dsa_cdata, digest, backend):
"""
This function truncates digests that are longer than a given DS
key's length so they can be signed. OpenSSL does this for us in
1.0.0c+ and it isn't needed in 0.9.8, but that leaves us with three
releases (1.0.0, 1.0.0a, and 1.0.0b) where this is a problem. This
truncation is not required in 0.9.8 because DSA is limited to SHA-1.
"""
q = backend._ffi.new("BIGNUM **")
backend._lib.DSA_get0_pqg(
dsa_cdata, backend._ffi.NULL, q, backend._ffi.NULL
)
backend.openssl_assert(q[0] != backend._ffi.NULL)
order_bits = backend._lib.BN_num_bits(q[0])
return _truncate_digest(digest, order_bits)
@utils.register_interface(AsymmetricVerificationContext)
class _DSAVerificationContext(object):
def __init__(self, backend, public_key, signature, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
data_to_verify = self._hash_ctx.finalize()
data_to_verify = _truncate_digest_for_dsa(
self._public_key._dsa_cdata, data_to_verify, self._backend
)
# The first parameter passed to DSA_verify is unused by OpenSSL but
# must be an integer.
res = self._backend._lib.DSA_verify(
0, data_to_verify, len(data_to_verify), self._signature,
len(self._signature), self._public_key._dsa_cdata)
if res != 1:
self._backend._consume_errors()
raise InvalidSignature
@utils.register_interface(AsymmetricSignatureContext)
class _DSASignatureContext(object):
def __init__(self, backend, private_key, algorithm):
self._backend = backend
self._private_key = private_key
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
data_to_sign = self._hash_ctx.finalize()
data_to_sign = _truncate_digest_for_dsa(
self._private_key._dsa_cdata, data_to_sign, self._backend
)
sig_buf_len = self._backend._lib.DSA_size(self._private_key._dsa_cdata)
sig_buf = self._backend._ffi.new("unsigned char[]", sig_buf_len)
buflen = self._backend._ffi.new("unsigned int *")
# The first parameter passed to DSA_sign is unused by OpenSSL but
# must be an integer.
res = self._backend._lib.DSA_sign(
0, data_to_sign, len(data_to_sign), sig_buf,
buflen, self._private_key._dsa_cdata)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0])
return self._backend._ffi.buffer(sig_buf)[:buflen[0]]
@utils.register_interface(dsa.DSAParametersWithNumbers)
class _DSAParameters(object):
def __init__(self, backend, dsa_cdata):
self._backend = backend
self._dsa_cdata = dsa_cdata
def parameter_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
return dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0])
)
def generate_private_key(self):
return self._backend.generate_dsa_private_key(self)
@utils.register_interface(dsa.DSAPrivateKeyWithSerialization)
class _DSAPrivateKey(object):
def __init__(self, backend, dsa_cdata, evp_pkey):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._evp_pkey = evp_pkey
p = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(
dsa_cdata, p, self._backend._ffi.NULL, self._backend._ffi.NULL
)
self._backend.openssl_assert(p[0] != backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(p[0])
key_size = utils.read_only_property("_key_size")
def signer(self, signature_algorithm):
return _DSASignatureContext(self._backend, self, signature_algorithm)
def private_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
pub_key = self._backend._ffi.new("BIGNUM **")
priv_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
self._backend._lib.DSA_get0_key(self._dsa_cdata, pub_key, priv_key)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(priv_key[0] != self._backend._ffi.NULL)
return dsa.DSAPrivateNumbers(
public_numbers=dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0])
),
y=self._backend._bn_to_int(pub_key[0])
),
x=self._backend._bn_to_int(priv_key[0])
)
def public_key(self):
dsa_cdata = self._backend._lib.DSA_new()
self._backend.openssl_assert(dsa_cdata != self._backend._ffi.NULL)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
p_dup = self._backend._lib.BN_dup(p[0])
q_dup = self._backend._lib.BN_dup(q[0])
g_dup = self._backend._lib.BN_dup(g[0])
res = self._backend._lib.DSA_set0_pqg(dsa_cdata, p_dup, q_dup, g_dup)
self._backend.openssl_assert(res == 1)
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_key(
self._dsa_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
pub_key_dup = self._backend._lib.BN_dup(pub_key[0])
res = self._backend._lib.DSA_set0_key(
dsa_cdata, pub_key_dup, self._backend._ffi.NULL
)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._dsa_cdata_to_evp_pkey(dsa_cdata)
return _DSAPublicKey(self._backend, dsa_cdata, evp_pkey)
def parameters(self):
dsa_cdata = self._backend._lib.DSA_new()
self._backend.openssl_assert(dsa_cdata != self._backend._ffi.NULL)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
p_dup = self._backend._lib.BN_dup(p[0])
q_dup = self._backend._lib.BN_dup(q[0])
g_dup = self._backend._lib.BN_dup(g[0])
res = self._backend._lib.DSA_set0_pqg(dsa_cdata, p_dup, q_dup, g_dup)
self._backend.openssl_assert(res == 1)
return _DSAParameters(self._backend, dsa_cdata)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._dsa_cdata
)
@utils.register_interface(dsa.DSAPublicKeyWithSerialization)
class _DSAPublicKey(object):
def __init__(self, backend, dsa_cdata, evp_pkey):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._evp_pkey = evp_pkey
p = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(
dsa_cdata, p, self._backend._ffi.NULL, self._backend._ffi.NULL
)
self._backend.openssl_assert(p[0] != backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(p[0])
key_size = utils.read_only_property("_key_size")
def verifier(self, signature, signature_algorithm):
if not isinstance(signature, bytes):
raise TypeError("signature must be bytes.")
return _DSAVerificationContext(
self._backend, self, signature, signature_algorithm
)
def public_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
self._backend._lib.DSA_get0_key(
self._dsa_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
return dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0])
),
y=self._backend._bn_to_int(pub_key[0])
)
def parameters(self):
dsa_cdata = self._backend._lib.DSA_new()
self._backend.openssl_assert(dsa_cdata != self._backend._ffi.NULL)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
p_dup = self._backend._lib.BN_dup(p[0])
q_dup = self._backend._lib.BN_dup(q[0])
g_dup = self._backend._lib.BN_dup(g[0])
res = self._backend._lib.DSA_set0_pqg(dsa_cdata, p_dup, q_dup, g_dup)
self._backend.openssl_assert(res == 1)
return _DSAParameters(self._backend, dsa_cdata)
def public_bytes(self, encoding, format):
if format is serialization.PublicFormat.PKCS1:
raise ValueError(
"DSA public keys do not support PKCS1 serialization"
)
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
None
)

View file

@ -0,0 +1,305 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.openssl.utils import _truncate_digest
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext, AsymmetricVerificationContext, ec
)
def _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend):
"""
This function truncates digests that are longer than a given elliptic
curve key's length so they can be signed. Since elliptic curve keys are
much shorter than RSA keys many digests (e.g. SHA-512) may require
truncation.
"""
_lib = backend._lib
_ffi = backend._ffi
group = _lib.EC_KEY_get0_group(ec_key_cdata)
with backend._tmp_bn_ctx() as bn_ctx:
order = _lib.BN_CTX_get(bn_ctx)
backend.openssl_assert(order != _ffi.NULL)
res = _lib.EC_GROUP_get_order(group, order, bn_ctx)
backend.openssl_assert(res == 1)
order_bits = _lib.BN_num_bits(order)
return _truncate_digest(digest, order_bits)
def _ec_key_curve_sn(backend, ec_key):
group = backend._lib.EC_KEY_get0_group(ec_key)
backend.openssl_assert(group != backend._ffi.NULL)
nid = backend._lib.EC_GROUP_get_curve_name(group)
# The following check is to find EC keys with unnamed curves and raise
# an error for now.
if nid == backend._lib.NID_undef:
raise NotImplementedError(
"ECDSA certificates with unnamed curves are unsupported "
"at this time"
)
curve_name = backend._lib.OBJ_nid2sn(nid)
backend.openssl_assert(curve_name != backend._ffi.NULL)
sn = backend._ffi.string(curve_name).decode('ascii')
return sn
def _mark_asn1_named_ec_curve(backend, ec_cdata):
"""
Set the named curve flag on the EC_KEY. This causes OpenSSL to
serialize EC keys along with their curve OID which makes
deserialization easier.
"""
backend._lib.EC_KEY_set_asn1_flag(
ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE
)
def _sn_to_elliptic_curve(backend, sn):
try:
return ec._CURVE_TYPES[sn]()
except KeyError:
raise UnsupportedAlgorithm(
"{0} is not a supported elliptic curve".format(sn),
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
@utils.register_interface(AsymmetricSignatureContext)
class _ECDSASignatureContext(object):
def __init__(self, backend, private_key, algorithm):
self._backend = backend
self._private_key = private_key
self._digest = hashes.Hash(algorithm, backend)
def update(self, data):
self._digest.update(data)
def finalize(self):
ec_key = self._private_key._ec_key
digest = self._digest.finalize()
digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)
max_size = self._backend._lib.ECDSA_size(ec_key)
self._backend.openssl_assert(max_size > 0)
sigbuf = self._backend._ffi.new("char[]", max_size)
siglen_ptr = self._backend._ffi.new("unsigned int[]", 1)
res = self._backend._lib.ECDSA_sign(
0,
digest,
len(digest),
sigbuf,
siglen_ptr,
ec_key
)
self._backend.openssl_assert(res == 1)
return self._backend._ffi.buffer(sigbuf)[:siglen_ptr[0]]
@utils.register_interface(AsymmetricVerificationContext)
class _ECDSAVerificationContext(object):
def __init__(self, backend, public_key, signature, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._digest = hashes.Hash(algorithm, backend)
def update(self, data):
self._digest.update(data)
def verify(self):
ec_key = self._public_key._ec_key
digest = self._digest.finalize()
digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)
res = self._backend._lib.ECDSA_verify(
0,
digest,
len(digest),
self._signature,
len(self._signature),
ec_key
)
if res != 1:
self._backend._consume_errors()
raise InvalidSignature
return True
@utils.register_interface(ec.EllipticCurvePrivateKeyWithSerialization)
class _EllipticCurvePrivateKey(object):
def __init__(self, backend, ec_key_cdata, evp_pkey):
self._backend = backend
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
curve = utils.read_only_property("_curve")
def signer(self, signature_algorithm):
if isinstance(signature_algorithm, ec.ECDSA):
return _ECDSASignatureContext(
self._backend, self, signature_algorithm.algorithm
)
else:
raise UnsupportedAlgorithm(
"Unsupported elliptic curve signature algorithm.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def exchange(self, algorithm, peer_public_key):
if not (
self._backend.elliptic_curve_exchange_algorithm_supported(
algorithm, self.curve
)
):
raise UnsupportedAlgorithm(
"This backend does not support the ECDH algorithm.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
if peer_public_key.curve.name != self.curve.name:
raise ValueError(
"peer_public_key and self are not on the same curve"
)
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
z_len = (self._backend._lib.EC_GROUP_get_degree(group) + 7) // 8
self._backend.openssl_assert(z_len > 0)
z_buf = self._backend._ffi.new("uint8_t[]", z_len)
peer_key = self._backend._lib.EC_KEY_get0_public_key(
peer_public_key._ec_key
)
r = self._backend._lib.ECDH_compute_key(
z_buf, z_len, peer_key, self._ec_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(r > 0)
return self._backend._ffi.buffer(z_buf)[:z_len]
def public_key(self):
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)
public_ec_key = self._backend._lib.EC_KEY_new_by_curve_name(curve_nid)
self._backend.openssl_assert(public_ec_key != self._backend._ffi.NULL)
public_ec_key = self._backend._ffi.gc(
public_ec_key, self._backend._lib.EC_KEY_free
)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)
return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)
def private_numbers(self):
bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)
private_value = self._backend._bn_to_int(bn)
return ec.EllipticCurvePrivateNumbers(
private_value=private_value,
public_numbers=self.public_key().public_numbers()
)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._ec_key
)
@utils.register_interface(ec.EllipticCurvePublicKeyWithSerialization)
class _EllipticCurvePublicKey(object):
def __init__(self, backend, ec_key_cdata, evp_pkey):
self._backend = backend
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
curve = utils.read_only_property("_curve")
def verifier(self, signature, signature_algorithm):
if not isinstance(signature, bytes):
raise TypeError("signature must be bytes.")
if isinstance(signature_algorithm, ec.ECDSA):
return _ECDSAVerificationContext(
self._backend, self, signature, signature_algorithm.algorithm
)
else:
raise UnsupportedAlgorithm(
"Unsupported elliptic curve signature algorithm.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def public_numbers(self):
set_func, get_func, group = (
self._backend._ec_key_determine_group_get_set_funcs(self._ec_key)
)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
with self._backend._tmp_bn_ctx() as bn_ctx:
bn_x = self._backend._lib.BN_CTX_get(bn_ctx)
bn_y = self._backend._lib.BN_CTX_get(bn_ctx)
res = get_func(group, point, bn_x, bn_y, bn_ctx)
self._backend.openssl_assert(res == 1)
x = self._backend._bn_to_int(bn_x)
y = self._backend._bn_to_int(bn_y)
return ec.EllipticCurvePublicNumbers(
x=x,
y=y,
curve=self._curve
)
def public_bytes(self, encoding, format):
if format is serialization.PublicFormat.PKCS1:
raise ValueError(
"EC public keys do not support PKCS1 serialization"
)
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
None
)

View file

@ -0,0 +1,592 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import calendar
import idna
import six
from cryptography import x509
from cryptography.hazmat.backends.openssl.decode_asn1 import (
_CRL_ENTRY_REASON_ENUM_TO_CODE, _DISTPOINT_TYPE_FULLNAME,
_DISTPOINT_TYPE_RELATIVENAME
)
from cryptography.x509.oid import CRLEntryExtensionOID, ExtensionOID, NameOID
def _encode_asn1_int(backend, x):
"""
Converts a python integer to an ASN1_INTEGER. The returned ASN1_INTEGER
will not be garbage collected (to support adding them to structs that take
ownership of the object). Be sure to register it for GC if it will be
discarded after use.
"""
# Convert Python integer to OpenSSL "bignum" in case value exceeds
# machine's native integer limits (note: `int_to_bn` doesn't automatically
# GC).
i = backend._int_to_bn(x)
i = backend._ffi.gc(i, backend._lib.BN_free)
# Wrap in an ASN.1 integer. Don't GC -- as documented.
i = backend._lib.BN_to_ASN1_INTEGER(i, backend._ffi.NULL)
backend.openssl_assert(i != backend._ffi.NULL)
return i
def _encode_asn1_int_gc(backend, x):
i = _encode_asn1_int(backend, x)
i = backend._ffi.gc(i, backend._lib.ASN1_INTEGER_free)
return i
def _encode_asn1_str(backend, data, length):
"""
Create an ASN1_OCTET_STRING from a Python byte string.
"""
s = backend._lib.ASN1_OCTET_STRING_new()
res = backend._lib.ASN1_OCTET_STRING_set(s, data, length)
backend.openssl_assert(res == 1)
return s
def _encode_asn1_utf8_str(backend, string):
"""
Create an ASN1_UTF8STRING from a Python unicode string.
This object will be an ASN1_STRING with UTF8 type in OpenSSL and
can be decoded with ASN1_STRING_to_UTF8.
"""
s = backend._lib.ASN1_UTF8STRING_new()
res = backend._lib.ASN1_STRING_set(
s, string.encode("utf8"), len(string.encode("utf8"))
)
backend.openssl_assert(res == 1)
return s
def _encode_asn1_str_gc(backend, data, length):
s = _encode_asn1_str(backend, data, length)
s = backend._ffi.gc(s, backend._lib.ASN1_OCTET_STRING_free)
return s
def _encode_inhibit_any_policy(backend, inhibit_any_policy):
return _encode_asn1_int_gc(backend, inhibit_any_policy.skip_certs)
def _encode_name(backend, attributes):
"""
The X509_NAME created will not be gc'd. Use _encode_name_gc if needed.
"""
subject = backend._lib.X509_NAME_new()
for attribute in attributes:
name_entry = _encode_name_entry(backend, attribute)
res = backend._lib.X509_NAME_add_entry(subject, name_entry, -1, 0)
backend.openssl_assert(res == 1)
return subject
def _encode_name_gc(backend, attributes):
subject = _encode_name(backend, attributes)
subject = backend._ffi.gc(subject, backend._lib.X509_NAME_free)
return subject
def _encode_sk_name_entry(backend, attributes):
"""
The sk_X50_NAME_ENTRY created will not be gc'd.
"""
stack = backend._lib.sk_X509_NAME_ENTRY_new_null()
for attribute in attributes:
name_entry = _encode_name_entry(backend, attribute)
res = backend._lib.sk_X509_NAME_ENTRY_push(stack, name_entry)
backend.openssl_assert(res == 1)
return stack
def _encode_name_entry(backend, attribute):
value = attribute.value.encode('utf8')
obj = _txt2obj_gc(backend, attribute.oid.dotted_string)
if attribute.oid == NameOID.COUNTRY_NAME:
# Per RFC5280 Appendix A.1 countryName should be encoded as
# PrintableString, not UTF8String
type = backend._lib.MBSTRING_ASC
else:
type = backend._lib.MBSTRING_UTF8
name_entry = backend._lib.X509_NAME_ENTRY_create_by_OBJ(
backend._ffi.NULL, obj, type, value, -1
)
return name_entry
def _encode_crl_number(backend, crl_number):
return _encode_asn1_int_gc(backend, crl_number.crl_number)
def _encode_crl_reason(backend, crl_reason):
asn1enum = backend._lib.ASN1_ENUMERATED_new()
backend.openssl_assert(asn1enum != backend._ffi.NULL)
asn1enum = backend._ffi.gc(asn1enum, backend._lib.ASN1_ENUMERATED_free)
res = backend._lib.ASN1_ENUMERATED_set(
asn1enum, _CRL_ENTRY_REASON_ENUM_TO_CODE[crl_reason.reason]
)
backend.openssl_assert(res == 1)
return asn1enum
def _encode_invalidity_date(backend, invalidity_date):
time = backend._lib.ASN1_GENERALIZEDTIME_set(
backend._ffi.NULL, calendar.timegm(
invalidity_date.invalidity_date.timetuple()
)
)
backend.openssl_assert(time != backend._ffi.NULL)
time = backend._ffi.gc(time, backend._lib.ASN1_GENERALIZEDTIME_free)
return time
def _encode_certificate_policies(backend, certificate_policies):
cp = backend._lib.sk_POLICYINFO_new_null()
backend.openssl_assert(cp != backend._ffi.NULL)
cp = backend._ffi.gc(cp, backend._lib.sk_POLICYINFO_free)
for policy_info in certificate_policies:
pi = backend._lib.POLICYINFO_new()
backend.openssl_assert(pi != backend._ffi.NULL)
res = backend._lib.sk_POLICYINFO_push(cp, pi)
backend.openssl_assert(res >= 1)
oid = _txt2obj(backend, policy_info.policy_identifier.dotted_string)
pi.policyid = oid
if policy_info.policy_qualifiers:
pqis = backend._lib.sk_POLICYQUALINFO_new_null()
backend.openssl_assert(pqis != backend._ffi.NULL)
for qualifier in policy_info.policy_qualifiers:
pqi = backend._lib.POLICYQUALINFO_new()
backend.openssl_assert(pqi != backend._ffi.NULL)
res = backend._lib.sk_POLICYQUALINFO_push(pqis, pqi)
backend.openssl_assert(res >= 1)
if isinstance(qualifier, six.text_type):
pqi.pqualid = _txt2obj(
backend, x509.OID_CPS_QUALIFIER.dotted_string
)
pqi.d.cpsuri = _encode_asn1_str(
backend,
qualifier.encode("ascii"),
len(qualifier.encode("ascii"))
)
else:
assert isinstance(qualifier, x509.UserNotice)
pqi.pqualid = _txt2obj(
backend, x509.OID_CPS_USER_NOTICE.dotted_string
)
un = backend._lib.USERNOTICE_new()
backend.openssl_assert(un != backend._ffi.NULL)
pqi.d.usernotice = un
if qualifier.explicit_text:
un.exptext = _encode_asn1_utf8_str(
backend, qualifier.explicit_text
)
un.noticeref = _encode_notice_reference(
backend, qualifier.notice_reference
)
pi.qualifiers = pqis
return cp
def _encode_notice_reference(backend, notice):
if notice is None:
return backend._ffi.NULL
else:
nr = backend._lib.NOTICEREF_new()
backend.openssl_assert(nr != backend._ffi.NULL)
# organization is a required field
nr.organization = _encode_asn1_utf8_str(backend, notice.organization)
notice_stack = backend._lib.sk_ASN1_INTEGER_new_null()
nr.noticenos = notice_stack
for number in notice.notice_numbers:
num = _encode_asn1_int(backend, number)
res = backend._lib.sk_ASN1_INTEGER_push(notice_stack, num)
backend.openssl_assert(res >= 1)
return nr
def _txt2obj(backend, name):
"""
Converts a Python string with an ASN.1 object ID in dotted form to a
ASN1_OBJECT.
"""
name = name.encode('ascii')
obj = backend._lib.OBJ_txt2obj(name, 1)
backend.openssl_assert(obj != backend._ffi.NULL)
return obj
def _txt2obj_gc(backend, name):
obj = _txt2obj(backend, name)
obj = backend._ffi.gc(obj, backend._lib.ASN1_OBJECT_free)
return obj
def _encode_ocsp_nocheck(backend, ext):
"""
The OCSP No Check extension is defined as a null ASN.1 value embedded in
an ASN.1 string.
"""
return _encode_asn1_str_gc(backend, b"\x05\x00", 2)
def _encode_key_usage(backend, key_usage):
set_bit = backend._lib.ASN1_BIT_STRING_set_bit
ku = backend._lib.ASN1_BIT_STRING_new()
ku = backend._ffi.gc(ku, backend._lib.ASN1_BIT_STRING_free)
res = set_bit(ku, 0, key_usage.digital_signature)
backend.openssl_assert(res == 1)
res = set_bit(ku, 1, key_usage.content_commitment)
backend.openssl_assert(res == 1)
res = set_bit(ku, 2, key_usage.key_encipherment)
backend.openssl_assert(res == 1)
res = set_bit(ku, 3, key_usage.data_encipherment)
backend.openssl_assert(res == 1)
res = set_bit(ku, 4, key_usage.key_agreement)
backend.openssl_assert(res == 1)
res = set_bit(ku, 5, key_usage.key_cert_sign)
backend.openssl_assert(res == 1)
res = set_bit(ku, 6, key_usage.crl_sign)
backend.openssl_assert(res == 1)
if key_usage.key_agreement:
res = set_bit(ku, 7, key_usage.encipher_only)
backend.openssl_assert(res == 1)
res = set_bit(ku, 8, key_usage.decipher_only)
backend.openssl_assert(res == 1)
else:
res = set_bit(ku, 7, 0)
backend.openssl_assert(res == 1)
res = set_bit(ku, 8, 0)
backend.openssl_assert(res == 1)
return ku
def _encode_authority_key_identifier(backend, authority_keyid):
akid = backend._lib.AUTHORITY_KEYID_new()
backend.openssl_assert(akid != backend._ffi.NULL)
akid = backend._ffi.gc(akid, backend._lib.AUTHORITY_KEYID_free)
if authority_keyid.key_identifier is not None:
akid.keyid = _encode_asn1_str(
backend,
authority_keyid.key_identifier,
len(authority_keyid.key_identifier)
)
if authority_keyid.authority_cert_issuer is not None:
akid.issuer = _encode_general_names(
backend, authority_keyid.authority_cert_issuer
)
if authority_keyid.authority_cert_serial_number is not None:
akid.serial = _encode_asn1_int(
backend, authority_keyid.authority_cert_serial_number
)
return akid
def _encode_basic_constraints(backend, basic_constraints):
constraints = backend._lib.BASIC_CONSTRAINTS_new()
constraints = backend._ffi.gc(
constraints, backend._lib.BASIC_CONSTRAINTS_free
)
constraints.ca = 255 if basic_constraints.ca else 0
if basic_constraints.ca and basic_constraints.path_length is not None:
constraints.pathlen = _encode_asn1_int(
backend, basic_constraints.path_length
)
return constraints
def _encode_authority_information_access(backend, authority_info_access):
aia = backend._lib.sk_ACCESS_DESCRIPTION_new_null()
backend.openssl_assert(aia != backend._ffi.NULL)
aia = backend._ffi.gc(
aia, backend._lib.sk_ACCESS_DESCRIPTION_free
)
for access_description in authority_info_access:
ad = backend._lib.ACCESS_DESCRIPTION_new()
method = _txt2obj(
backend, access_description.access_method.dotted_string
)
gn = _encode_general_name(backend, access_description.access_location)
ad.method = method
ad.location = gn
res = backend._lib.sk_ACCESS_DESCRIPTION_push(aia, ad)
backend.openssl_assert(res >= 1)
return aia
def _encode_general_names(backend, names):
general_names = backend._lib.GENERAL_NAMES_new()
backend.openssl_assert(general_names != backend._ffi.NULL)
for name in names:
gn = _encode_general_name(backend, name)
res = backend._lib.sk_GENERAL_NAME_push(general_names, gn)
backend.openssl_assert(res != 0)
return general_names
def _encode_alt_name(backend, san):
general_names = _encode_general_names(backend, san)
general_names = backend._ffi.gc(
general_names, backend._lib.GENERAL_NAMES_free
)
return general_names
def _encode_subject_key_identifier(backend, ski):
return _encode_asn1_str_gc(backend, ski.digest, len(ski.digest))
def _encode_general_name(backend, name):
if isinstance(name, x509.DNSName):
gn = backend._lib.GENERAL_NAME_new()
backend.openssl_assert(gn != backend._ffi.NULL)
gn.type = backend._lib.GEN_DNS
ia5 = backend._lib.ASN1_IA5STRING_new()
backend.openssl_assert(ia5 != backend._ffi.NULL)
if name.value.startswith(u"*."):
value = b"*." + idna.encode(name.value[2:])
else:
value = idna.encode(name.value)
res = backend._lib.ASN1_STRING_set(ia5, value, len(value))
backend.openssl_assert(res == 1)
gn.d.dNSName = ia5
elif isinstance(name, x509.RegisteredID):
gn = backend._lib.GENERAL_NAME_new()
backend.openssl_assert(gn != backend._ffi.NULL)
gn.type = backend._lib.GEN_RID
obj = backend._lib.OBJ_txt2obj(
name.value.dotted_string.encode('ascii'), 1
)
backend.openssl_assert(obj != backend._ffi.NULL)
gn.d.registeredID = obj
elif isinstance(name, x509.DirectoryName):
gn = backend._lib.GENERAL_NAME_new()
backend.openssl_assert(gn != backend._ffi.NULL)
dir_name = _encode_name(backend, name.value)
gn.type = backend._lib.GEN_DIRNAME
gn.d.directoryName = dir_name
elif isinstance(name, x509.IPAddress):
gn = backend._lib.GENERAL_NAME_new()
backend.openssl_assert(gn != backend._ffi.NULL)
ipaddr = _encode_asn1_str(
backend, name.value.packed, len(name.value.packed)
)
gn.type = backend._lib.GEN_IPADD
gn.d.iPAddress = ipaddr
elif isinstance(name, x509.OtherName):
gn = backend._lib.GENERAL_NAME_new()
backend.openssl_assert(gn != backend._ffi.NULL)
other_name = backend._lib.OTHERNAME_new()
backend.openssl_assert(other_name != backend._ffi.NULL)
type_id = backend._lib.OBJ_txt2obj(
name.type_id.dotted_string.encode('ascii'), 1
)
backend.openssl_assert(type_id != backend._ffi.NULL)
data = backend._ffi.new("unsigned char[]", name.value)
data_ptr_ptr = backend._ffi.new("unsigned char **")
data_ptr_ptr[0] = data
value = backend._lib.d2i_ASN1_TYPE(
backend._ffi.NULL, data_ptr_ptr, len(name.value)
)
if value == backend._ffi.NULL:
backend._consume_errors()
raise ValueError("Invalid ASN.1 data")
other_name.type_id = type_id
other_name.value = value
gn.type = backend._lib.GEN_OTHERNAME
gn.d.otherName = other_name
elif isinstance(name, x509.RFC822Name):
gn = backend._lib.GENERAL_NAME_new()
backend.openssl_assert(gn != backend._ffi.NULL)
asn1_str = _encode_asn1_str(
backend, name._encoded, len(name._encoded)
)
gn.type = backend._lib.GEN_EMAIL
gn.d.rfc822Name = asn1_str
elif isinstance(name, x509.UniformResourceIdentifier):
gn = backend._lib.GENERAL_NAME_new()
backend.openssl_assert(gn != backend._ffi.NULL)
asn1_str = _encode_asn1_str(
backend, name._encoded, len(name._encoded)
)
gn.type = backend._lib.GEN_URI
gn.d.uniformResourceIdentifier = asn1_str
else:
raise ValueError(
"{0} is an unknown GeneralName type".format(name)
)
return gn
def _encode_extended_key_usage(backend, extended_key_usage):
eku = backend._lib.sk_ASN1_OBJECT_new_null()
eku = backend._ffi.gc(eku, backend._lib.sk_ASN1_OBJECT_free)
for oid in extended_key_usage:
obj = _txt2obj(backend, oid.dotted_string)
res = backend._lib.sk_ASN1_OBJECT_push(eku, obj)
backend.openssl_assert(res >= 1)
return eku
_CRLREASONFLAGS = {
x509.ReasonFlags.key_compromise: 1,
x509.ReasonFlags.ca_compromise: 2,
x509.ReasonFlags.affiliation_changed: 3,
x509.ReasonFlags.superseded: 4,
x509.ReasonFlags.cessation_of_operation: 5,
x509.ReasonFlags.certificate_hold: 6,
x509.ReasonFlags.privilege_withdrawn: 7,
x509.ReasonFlags.aa_compromise: 8,
}
def _encode_crl_distribution_points(backend, crl_distribution_points):
cdp = backend._lib.sk_DIST_POINT_new_null()
cdp = backend._ffi.gc(cdp, backend._lib.sk_DIST_POINT_free)
for point in crl_distribution_points:
dp = backend._lib.DIST_POINT_new()
backend.openssl_assert(dp != backend._ffi.NULL)
if point.reasons:
bitmask = backend._lib.ASN1_BIT_STRING_new()
backend.openssl_assert(bitmask != backend._ffi.NULL)
dp.reasons = bitmask
for reason in point.reasons:
res = backend._lib.ASN1_BIT_STRING_set_bit(
bitmask, _CRLREASONFLAGS[reason], 1
)
backend.openssl_assert(res == 1)
if point.full_name:
dpn = backend._lib.DIST_POINT_NAME_new()
backend.openssl_assert(dpn != backend._ffi.NULL)
dpn.type = _DISTPOINT_TYPE_FULLNAME
dpn.name.fullname = _encode_general_names(backend, point.full_name)
dp.distpoint = dpn
if point.relative_name:
dpn = backend._lib.DIST_POINT_NAME_new()
backend.openssl_assert(dpn != backend._ffi.NULL)
dpn.type = _DISTPOINT_TYPE_RELATIVENAME
relativename = _encode_sk_name_entry(backend, point.relative_name)
backend.openssl_assert(relativename != backend._ffi.NULL)
dpn.name.relativename = relativename
dp.distpoint = dpn
if point.crl_issuer:
dp.CRLissuer = _encode_general_names(backend, point.crl_issuer)
res = backend._lib.sk_DIST_POINT_push(cdp, dp)
backend.openssl_assert(res >= 1)
return cdp
def _encode_name_constraints(backend, name_constraints):
nc = backend._lib.NAME_CONSTRAINTS_new()
backend.openssl_assert(nc != backend._ffi.NULL)
nc = backend._ffi.gc(nc, backend._lib.NAME_CONSTRAINTS_free)
permitted = _encode_general_subtree(
backend, name_constraints.permitted_subtrees
)
nc.permittedSubtrees = permitted
excluded = _encode_general_subtree(
backend, name_constraints.excluded_subtrees
)
nc.excludedSubtrees = excluded
return nc
def _encode_policy_constraints(backend, policy_constraints):
pc = backend._lib.POLICY_CONSTRAINTS_new()
backend.openssl_assert(pc != backend._ffi.NULL)
pc = backend._ffi.gc(pc, backend._lib.POLICY_CONSTRAINTS_free)
if policy_constraints.require_explicit_policy is not None:
pc.requireExplicitPolicy = _encode_asn1_int(
backend, policy_constraints.require_explicit_policy
)
if policy_constraints.inhibit_policy_mapping is not None:
pc.inhibitPolicyMapping = _encode_asn1_int(
backend, policy_constraints.inhibit_policy_mapping
)
return pc
def _encode_general_subtree(backend, subtrees):
if subtrees is None:
return backend._ffi.NULL
else:
general_subtrees = backend._lib.sk_GENERAL_SUBTREE_new_null()
for name in subtrees:
gs = backend._lib.GENERAL_SUBTREE_new()
gs.base = _encode_general_name(backend, name)
res = backend._lib.sk_GENERAL_SUBTREE_push(general_subtrees, gs)
assert res >= 1
return general_subtrees
_EXTENSION_ENCODE_HANDLERS = {
ExtensionOID.BASIC_CONSTRAINTS: _encode_basic_constraints,
ExtensionOID.SUBJECT_KEY_IDENTIFIER: _encode_subject_key_identifier,
ExtensionOID.KEY_USAGE: _encode_key_usage,
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: _encode_alt_name,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _encode_alt_name,
ExtensionOID.EXTENDED_KEY_USAGE: _encode_extended_key_usage,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _encode_authority_key_identifier,
ExtensionOID.CERTIFICATE_POLICIES: _encode_certificate_policies,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_encode_authority_information_access
),
ExtensionOID.CRL_DISTRIBUTION_POINTS: _encode_crl_distribution_points,
ExtensionOID.INHIBIT_ANY_POLICY: _encode_inhibit_any_policy,
ExtensionOID.OCSP_NO_CHECK: _encode_ocsp_nocheck,
ExtensionOID.NAME_CONSTRAINTS: _encode_name_constraints,
ExtensionOID.POLICY_CONSTRAINTS: _encode_policy_constraints,
}
_CRL_EXTENSION_ENCODE_HANDLERS = {
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _encode_alt_name,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _encode_authority_key_identifier,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_encode_authority_information_access
),
ExtensionOID.CRL_NUMBER: _encode_crl_number,
}
_CRL_ENTRY_EXTENSION_ENCODE_HANDLERS = {
CRLEntryExtensionOID.CERTIFICATE_ISSUER: _encode_alt_name,
CRLEntryExtensionOID.CRL_REASON: _encode_crl_reason,
CRLEntryExtensionOID.INVALIDITY_DATE: _encode_invalidity_date,
}

View file

@ -0,0 +1,61 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import hashes
@utils.register_interface(hashes.HashContext)
class _HashContext(object):
def __init__(self, backend, algorithm, ctx=None):
self._algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
evp_md = self._backend._lib.EVP_get_digestbyname(
algorithm.name.encode("ascii"))
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
res = self._backend._lib.EVP_DigestInit_ex(ctx, evp_md,
self._backend._ffi.NULL)
self._backend.openssl_assert(res != 0)
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def copy(self):
copied_ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
res = self._backend._lib.EVP_MD_CTX_copy_ex(copied_ctx, self._ctx)
self._backend.openssl_assert(res != 0)
return _HashContext(self._backend, self.algorithm, ctx=copied_ctx)
def update(self, data):
res = self._backend._lib.EVP_DigestUpdate(self._ctx, data, len(data))
self._backend.openssl_assert(res != 0)
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]",
self._backend._lib.EVP_MAX_MD_SIZE)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.EVP_DigestFinal_ex(self._ctx, buf, outlen)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(outlen[0] == self.algorithm.digest_size)
return self._backend._ffi.buffer(buf)[:outlen[0]]

View file

@ -0,0 +1,80 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import constant_time, hashes, interfaces
@utils.register_interface(interfaces.MACContext)
@utils.register_interface(hashes.HashContext)
class _HMACContext(object):
def __init__(self, backend, key, algorithm, ctx=None):
self._algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._lib.Cryptography_HMAC_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.Cryptography_HMAC_CTX_free
)
evp_md = self._backend._lib.EVP_get_digestbyname(
algorithm.name.encode('ascii'))
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
res = self._backend._lib.Cryptography_HMAC_Init_ex(
ctx, key, len(key), evp_md, self._backend._ffi.NULL
)
self._backend.openssl_assert(res != 0)
self._ctx = ctx
self._key = key
algorithm = utils.read_only_property("_algorithm")
def copy(self):
copied_ctx = self._backend._lib.Cryptography_HMAC_CTX_new()
self._backend.openssl_assert(copied_ctx != self._backend._ffi.NULL)
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.Cryptography_HMAC_CTX_free
)
res = self._backend._lib.Cryptography_HMAC_CTX_copy(
copied_ctx, self._ctx
)
self._backend.openssl_assert(res != 0)
return _HMACContext(
self._backend, self._key, self.algorithm, ctx=copied_ctx
)
def update(self, data):
res = self._backend._lib.Cryptography_HMAC_Update(
self._ctx, data, len(data)
)
self._backend.openssl_assert(res != 0)
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]",
self._backend._lib.EVP_MAX_MD_SIZE)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.Cryptography_HMAC_Final(
self._ctx, buf, outlen
)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(outlen[0] == self.algorithm.digest_size)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def verify(self, signature):
digest = self.finalize()
if not constant_time.bytes_eq(digest, signature):
raise InvalidSignature("Signature did not match digest.")

View file

@ -0,0 +1,674 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import math
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext, AsymmetricVerificationContext, rsa
)
from cryptography.hazmat.primitives.asymmetric.padding import (
AsymmetricPadding, MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.asymmetric.rsa import (
RSAPrivateKeyWithSerialization, RSAPublicKeyWithSerialization
)
def _get_rsa_pss_salt_length(pss, key_size, digest_size):
salt = pss._salt_length
if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
# bit length - 1 per RFC 3447
emlen = int(math.ceil((key_size - 1) / 8.0))
salt_length = emlen - digest_size - 2
assert salt_length >= 0
return salt_length
else:
return salt
def _enc_dec_rsa(backend, key, data, padding):
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Padding must be an instance of AsymmetricPadding.")
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, OAEP):
padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
if not backend.rsa_padding_supported(padding):
raise UnsupportedAlgorithm(
"This combination of padding and hash algorithm is not "
"supported by this backend.",
_Reasons.UNSUPPORTED_PADDING
)
if padding._label is not None and padding._label != b"":
raise ValueError("This backend does not support OAEP labels.")
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(
padding.name
),
_Reasons.UNSUPPORTED_PADDING
)
if backend._lib.Cryptography_HAS_PKEY_CTX:
return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding)
else:
return _enc_dec_rsa_098(backend, key, data, padding_enum)
def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding):
if isinstance(key, _RSAPublicKey):
init = backend._lib.EVP_PKEY_encrypt_init
crypt = backend._lib.Cryptography_EVP_PKEY_encrypt
else:
init = backend._lib.EVP_PKEY_decrypt_init
crypt = backend._lib.Cryptography_EVP_PKEY_decrypt
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
key._evp_pkey, backend._ffi.NULL
)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(buf_size > 0)
if (
isinstance(padding, OAEP) and
backend._lib.Cryptography_HAS_RSA_OAEP_MD
):
mgf1_md = backend._lib.EVP_get_digestbyname(
padding._mgf._algorithm.name.encode("ascii"))
backend.openssl_assert(mgf1_md != backend._ffi.NULL)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
oaep_md = backend._lib.EVP_get_digestbyname(
padding._algorithm.name.encode("ascii"))
backend.openssl_assert(oaep_md != backend._ffi.NULL)
res = backend._lib.EVP_PKEY_CTX_set_rsa_oaep_md(pkey_ctx, oaep_md)
backend.openssl_assert(res > 0)
outlen = backend._ffi.new("size_t *", buf_size)
buf = backend._ffi.new("char[]", buf_size)
res = crypt(pkey_ctx, buf, outlen, data, len(data))
if res <= 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:outlen[0]]
def _enc_dec_rsa_098(backend, key, data, padding_enum):
if isinstance(key, _RSAPublicKey):
crypt = backend._lib.RSA_public_encrypt
else:
crypt = backend._lib.RSA_private_decrypt
key_size = backend._lib.RSA_size(key._rsa_cdata)
backend.openssl_assert(key_size > 0)
buf = backend._ffi.new("unsigned char[]", key_size)
res = crypt(len(data), data, buf, key._rsa_cdata, padding_enum)
if res < 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:res]
def _handle_rsa_enc_dec_error(backend, key):
errors = backend._consume_errors()
assert errors
assert errors[0].lib == backend._lib.ERR_LIB_RSA
if isinstance(key, _RSAPublicKey):
assert (errors[0].reason ==
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
raise ValueError(
"Data too long for key size. Encrypt less data or use a "
"larger key size."
)
else:
decoding_errors = [
backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_01,
backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_02,
backend._lib.RSA_R_OAEP_DECODING_ERROR,
# Though this error looks similar to the
# RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE, this occurs on decrypts,
# rather than on encrypts
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_MODULUS,
]
if backend._lib.Cryptography_HAS_RSA_R_PKCS_DECODING_ERROR:
decoding_errors.append(backend._lib.RSA_R_PKCS_DECODING_ERROR)
assert errors[0].reason in decoding_errors
raise ValueError("Decryption failed.")
@utils.register_interface(AsymmetricSignatureContext)
class _RSASignatureContext(object):
def __init__(self, backend, private_key, padding, algorithm):
self._backend = backend
self._private_key = private_key
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Expected provider of AsymmetricPadding.")
self._pkey_size = self._backend._lib.EVP_PKEY_size(
self._private_key._evp_pkey
)
self._backend.openssl_assert(self._pkey_size > 0)
if isinstance(padding, PKCS1v15):
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._finalize_method = self._finalize_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
else:
self._finalize_method = self._finalize_pkcs1
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
if self._pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError("Digest too large for key size. Use a larger "
"key.")
if not self._backend._pss_mgf1_hash_supported(
padding._mgf._algorithm
):
raise UnsupportedAlgorithm(
"When OpenSSL is older than 1.0.1 then only SHA1 is "
"supported with MGF1.",
_Reasons.UNSUPPORTED_HASH
)
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._finalize_method = self._finalize_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
else:
self._finalize_method = self._finalize_pss
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
evp_md = self._backend._lib.EVP_get_digestbyname(
self._algorithm.name.encode("ascii"))
self._backend.openssl_assert(evp_md != self._backend._ffi.NULL)
return self._finalize_method(evp_md)
def _finalize_pkey_ctx(self, evp_md):
pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
self._private_key._evp_pkey, self._backend._ffi.NULL
)
self._backend.openssl_assert(pkey_ctx != self._backend._ffi.NULL)
pkey_ctx = self._backend._ffi.gc(pkey_ctx,
self._backend._lib.EVP_PKEY_CTX_free)
res = self._backend._lib.EVP_PKEY_sign_init(pkey_ctx)
self._backend.openssl_assert(res == 1)
res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
self._backend.openssl_assert(res > 0)
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, self._padding_enum)
self._backend.openssl_assert(res > 0)
if isinstance(self._padding, PSS):
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
self._padding,
self._private_key.key_size,
self._hash_ctx.algorithm.digest_size
)
)
self._backend.openssl_assert(res > 0)
if self._backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = self._backend._lib.EVP_get_digestbyname(
self._padding._mgf._algorithm.name.encode("ascii"))
self._backend.openssl_assert(
mgf1_md != self._backend._ffi.NULL
)
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
self._backend.openssl_assert(res > 0)
data_to_sign = self._hash_ctx.finalize()
buflen = self._backend._ffi.new("size_t *")
res = self._backend._lib.EVP_PKEY_sign(
pkey_ctx,
self._backend._ffi.NULL,
buflen,
data_to_sign,
len(data_to_sign)
)
self._backend.openssl_assert(res == 1)
buf = self._backend._ffi.new("unsigned char[]", buflen[0])
res = self._backend._lib.EVP_PKEY_sign(
pkey_ctx, buf, buflen, data_to_sign, len(data_to_sign))
if res != 1:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
reason = None
if (errors[0].reason ==
self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
reason = ("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
else:
assert (errors[0].reason ==
self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
reason = "Digest too large for key size. Use a larger key."
assert reason is not None
raise ValueError(reason)
return self._backend._ffi.buffer(buf)[:]
def _finalize_pkcs1(self, evp_md):
if self._hash_ctx._ctx is None:
raise AlreadyFinalized("Context has already been finalized.")
sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
sig_len = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.EVP_SignFinal(
self._hash_ctx._ctx._ctx,
sig_buf,
sig_len,
self._private_key._evp_pkey
)
self._hash_ctx.finalize()
if res == 0:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
assert (errors[0].reason ==
self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
raise ValueError("Digest too large for key size. Use a larger "
"key.")
return self._backend._ffi.buffer(sig_buf)[:sig_len[0]]
def _finalize_pss(self, evp_md):
data_to_sign = self._hash_ctx.finalize()
padded = self._backend._ffi.new("unsigned char[]", self._pkey_size)
res = self._backend._lib.RSA_padding_add_PKCS1_PSS(
self._private_key._rsa_cdata,
padded,
data_to_sign,
evp_md,
_get_rsa_pss_salt_length(
self._padding,
self._private_key.key_size,
len(data_to_sign)
)
)
if res != 1:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
assert (errors[0].reason ==
self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
raise ValueError("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
sig_len = self._backend._lib.RSA_private_encrypt(
self._pkey_size,
padded,
sig_buf,
self._private_key._rsa_cdata,
self._backend._lib.RSA_NO_PADDING
)
self._backend.openssl_assert(sig_len != -1)
return self._backend._ffi.buffer(sig_buf)[:sig_len]
@utils.register_interface(AsymmetricVerificationContext)
class _RSAVerificationContext(object):
def __init__(self, backend, public_key, signature, padding, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Expected provider of AsymmetricPadding.")
self._pkey_size = self._backend._lib.EVP_PKEY_size(
self._public_key._evp_pkey
)
self._backend.openssl_assert(self._pkey_size > 0)
if isinstance(padding, PKCS1v15):
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._verify_method = self._verify_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
else:
self._verify_method = self._verify_pkcs1
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
if self._pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError(
"Digest too large for key size. Check that you have the "
"correct key and digest algorithm."
)
if not self._backend._pss_mgf1_hash_supported(
padding._mgf._algorithm
):
raise UnsupportedAlgorithm(
"When OpenSSL is older than 1.0.1 then only SHA1 is "
"supported with MGF1.",
_Reasons.UNSUPPORTED_HASH
)
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._verify_method = self._verify_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
else:
self._verify_method = self._verify_pss
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
evp_md = self._backend._lib.EVP_get_digestbyname(
self._algorithm.name.encode("ascii"))
self._backend.openssl_assert(evp_md != self._backend._ffi.NULL)
self._verify_method(evp_md)
def _verify_pkey_ctx(self, evp_md):
pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
self._public_key._evp_pkey, self._backend._ffi.NULL
)
self._backend.openssl_assert(pkey_ctx != self._backend._ffi.NULL)
pkey_ctx = self._backend._ffi.gc(pkey_ctx,
self._backend._lib.EVP_PKEY_CTX_free)
res = self._backend._lib.EVP_PKEY_verify_init(pkey_ctx)
self._backend.openssl_assert(res == 1)
res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
self._backend.openssl_assert(res > 0)
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, self._padding_enum)
self._backend.openssl_assert(res > 0)
if isinstance(self._padding, PSS):
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
self._padding,
self._public_key.key_size,
self._hash_ctx.algorithm.digest_size
)
)
self._backend.openssl_assert(res > 0)
if self._backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = self._backend._lib.EVP_get_digestbyname(
self._padding._mgf._algorithm.name.encode("ascii"))
self._backend.openssl_assert(
mgf1_md != self._backend._ffi.NULL
)
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
self._backend.openssl_assert(res > 0)
data_to_verify = self._hash_ctx.finalize()
res = self._backend._lib.EVP_PKEY_verify(
pkey_ctx,
self._signature,
len(self._signature),
data_to_verify,
len(data_to_verify)
)
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
self._backend.openssl_assert(res >= 0)
if res == 0:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
def _verify_pkcs1(self, evp_md):
if self._hash_ctx._ctx is None:
raise AlreadyFinalized("Context has already been finalized.")
res = self._backend._lib.EVP_VerifyFinal(
self._hash_ctx._ctx._ctx,
self._signature,
len(self._signature),
self._public_key._evp_pkey
)
self._hash_ctx.finalize()
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
self._backend.openssl_assert(res >= 0)
if res == 0:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
def _verify_pss(self, evp_md):
buf = self._backend._ffi.new("unsigned char[]", self._pkey_size)
res = self._backend._lib.RSA_public_decrypt(
len(self._signature),
self._signature,
buf,
self._public_key._rsa_cdata,
self._backend._lib.RSA_NO_PADDING
)
if res != self._pkey_size:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
data_to_verify = self._hash_ctx.finalize()
res = self._backend._lib.RSA_verify_PKCS1_PSS(
self._public_key._rsa_cdata,
data_to_verify,
evp_md,
buf,
_get_rsa_pss_salt_length(
self._padding,
self._public_key.key_size,
len(data_to_verify)
)
)
if res != 1:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
@utils.register_interface(RSAPrivateKeyWithSerialization)
class _RSAPrivateKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, self._backend._ffi.NULL,
self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def signer(self, padding, algorithm):
return _RSASignatureContext(self._backend, self, padding, algorithm)
def decrypt(self, ciphertext, padding):
key_size_bytes = int(math.ceil(self.key_size / 8.0))
if key_size_bytes != len(ciphertext):
raise ValueError("Ciphertext length must be equal to key size.")
return _enc_dec_rsa(self._backend, self, ciphertext, padding)
def public_key(self):
ctx = self._backend._lib.RSAPublicKey_dup(self._rsa_cdata)
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
res = self._backend._lib.RSA_blinding_on(ctx, self._backend._ffi.NULL)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._rsa_cdata_to_evp_pkey(ctx)
return _RSAPublicKey(self._backend, ctx, evp_pkey)
def private_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
d = self._backend._ffi.new("BIGNUM **")
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
dmp1 = self._backend._ffi.new("BIGNUM **")
dmq1 = self._backend._ffi.new("BIGNUM **")
iqmp = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(self._rsa_cdata, n, e, d)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(d[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_factors(self._rsa_cdata, p, q)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_crt_params(
self._rsa_cdata, dmp1, dmq1, iqmp
)
self._backend.openssl_assert(dmp1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(dmq1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(iqmp[0] != self._backend._ffi.NULL)
return rsa.RSAPrivateNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
d=self._backend._bn_to_int(d[0]),
dmp1=self._backend._bn_to_int(dmp1[0]),
dmq1=self._backend._bn_to_int(dmq1[0]),
iqmp=self._backend._bn_to_int(iqmp[0]),
public_numbers=rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._rsa_cdata
)
def sign(self, data, padding, algorithm):
signer = self.signer(padding, algorithm)
signer.update(data)
signature = signer.finalize()
return signature
@utils.register_interface(RSAPublicKeyWithSerialization)
class _RSAPublicKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, self._backend._ffi.NULL,
self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def verifier(self, signature, padding, algorithm):
if not isinstance(signature, bytes):
raise TypeError("signature must be bytes.")
return _RSAVerificationContext(
self._backend, self, signature, padding, algorithm
)
def encrypt(self, plaintext, padding):
return _enc_dec_rsa(self._backend, self, plaintext, padding)
def public_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, e, self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
return rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
def public_bytes(self, encoding, format):
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
self._rsa_cdata
)
def verify(self, signature, data, padding, algorithm):
verifier = self.verifier(signature, padding, algorithm)
verifier.update(data)
verifier.verify()

View file

@ -0,0 +1,26 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import six
def _truncate_digest(digest, order_bits):
digest_len = len(digest)
if 8 * digest_len > order_bits:
digest_len = (order_bits + 7) // 8
digest = digest[:digest_len]
if 8 * digest_len > order_bits:
rshift = 8 - (order_bits & 0x7)
assert 0 < rshift < 8
mask = 0xFF >> rshift << rshift
# Set the bottom rshift bits to 0
digest = digest[:-1] + six.int2byte(six.indexbytes(digest, -1) & mask)
return digest

View file

@ -0,0 +1,420 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import operator
import warnings
from cryptography import utils, x509
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.backends.openssl.decode_asn1 import (
_CERTIFICATE_EXTENSION_PARSER, _CRL_EXTENSION_PARSER,
_CSR_EXTENSION_PARSER, _REVOKED_CERTIFICATE_EXTENSION_PARSER,
_asn1_integer_to_int, _asn1_string_to_bytes, _decode_x509_name, _obj2txt,
_parse_asn1_time
)
from cryptography.hazmat.primitives import hashes, serialization
@utils.register_interface(x509.Certificate)
class _Certificate(object):
def __init__(self, backend, x509):
self._backend = backend
self._x509 = x509
def __repr__(self):
return "<Certificate(subject={0}, ...)>".format(self.subject)
def __eq__(self, other):
if not isinstance(other, x509.Certificate):
return NotImplemented
res = self._backend._lib.X509_cmp(self._x509, other._x509)
return res == 0
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.public_bytes(serialization.Encoding.DER))
def fingerprint(self, algorithm):
h = hashes.Hash(algorithm, self._backend)
h.update(self.public_bytes(serialization.Encoding.DER))
return h.finalize()
@property
def version(self):
version = self._backend._lib.X509_get_version(self._x509)
if version == 0:
return x509.Version.v1
elif version == 2:
return x509.Version.v3
else:
raise x509.InvalidVersion(
"{0} is not a valid X509 version".format(version), version
)
@property
def serial(self):
warnings.warn(
"Certificate serial is deprecated, use serial_number instead.",
utils.DeprecatedIn14,
stacklevel=2
)
return self.serial_number
@property
def serial_number(self):
asn1_int = self._backend._lib.X509_get_serialNumber(self._x509)
self._backend.openssl_assert(asn1_int != self._backend._ffi.NULL)
return _asn1_integer_to_int(self._backend, asn1_int)
def public_key(self):
pkey = self._backend._lib.X509_get_pubkey(self._x509)
if pkey == self._backend._ffi.NULL:
# Remove errors from the stack.
self._backend._consume_errors()
raise ValueError("Certificate public key is of an unknown type")
pkey = self._backend._ffi.gc(pkey, self._backend._lib.EVP_PKEY_free)
return self._backend._evp_pkey_to_public_key(pkey)
@property
def not_valid_before(self):
asn1_time = self._backend._lib.X509_get_notBefore(self._x509)
return _parse_asn1_time(self._backend, asn1_time)
@property
def not_valid_after(self):
asn1_time = self._backend._lib.X509_get_notAfter(self._x509)
return _parse_asn1_time(self._backend, asn1_time)
@property
def issuer(self):
issuer = self._backend._lib.X509_get_issuer_name(self._x509)
self._backend.openssl_assert(issuer != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, issuer)
@property
def subject(self):
subject = self._backend._lib.X509_get_subject_name(self._x509)
self._backend.openssl_assert(subject != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, subject)
@property
def signature_hash_algorithm(self):
alg = self._backend._ffi.new("X509_ALGOR **")
self._backend._lib.X509_get0_signature(
self._backend._ffi.NULL, alg, self._x509
)
self._backend.openssl_assert(alg[0] != self._backend._ffi.NULL)
oid = _obj2txt(self._backend, alg[0].algorithm)
try:
return x509._SIG_OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID:{0} not recognized".format(oid)
)
@property
def extensions(self):
return _CERTIFICATE_EXTENSION_PARSER.parse(self._backend, self._x509)
@property
def signature(self):
sig = self._backend._ffi.new("ASN1_BIT_STRING **")
self._backend._lib.X509_get0_signature(
sig, self._backend._ffi.NULL, self._x509
)
self._backend.openssl_assert(sig[0] != self._backend._ffi.NULL)
return _asn1_string_to_bytes(self._backend, sig[0])
@property
def tbs_certificate_bytes(self):
pp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.i2d_re_X509_tbs(self._x509, pp)
self._backend.openssl_assert(res > 0)
pp = self._backend._ffi.gc(
pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0])
)
return self._backend._ffi.buffer(pp[0], res)[:]
def public_bytes(self, encoding):
bio = self._backend._create_mem_bio_gc()
if encoding is serialization.Encoding.PEM:
res = self._backend._lib.PEM_write_bio_X509(bio, self._x509)
elif encoding is serialization.Encoding.DER:
res = self._backend._lib.i2d_X509_bio(bio, self._x509)
else:
raise TypeError("encoding must be an item from the Encoding enum")
self._backend.openssl_assert(res == 1)
return self._backend._read_mem_bio(bio)
@utils.register_interface(x509.RevokedCertificate)
class _RevokedCertificate(object):
def __init__(self, backend, crl, x509_revoked):
self._backend = backend
# The X509_REVOKED_value is a X509_REVOKED * that has
# no reference counting. This means when X509_CRL_free is
# called then the CRL and all X509_REVOKED * are freed. Since
# you can retain a reference to a single revoked certificate
# and let the CRL fall out of scope we need to retain a
# private reference to the CRL inside the RevokedCertificate
# object to prevent the gc from being called inappropriately.
self._crl = crl
self._x509_revoked = x509_revoked
@property
def serial_number(self):
asn1_int = self._backend._lib.X509_REVOKED_get0_serialNumber(
self._x509_revoked
)
self._backend.openssl_assert(asn1_int != self._backend._ffi.NULL)
return _asn1_integer_to_int(self._backend, asn1_int)
@property
def revocation_date(self):
return _parse_asn1_time(
self._backend,
self._backend._lib.X509_REVOKED_get0_revocationDate(
self._x509_revoked
)
)
@property
def extensions(self):
return _REVOKED_CERTIFICATE_EXTENSION_PARSER.parse(
self._backend, self._x509_revoked
)
@utils.register_interface(x509.CertificateRevocationList)
class _CertificateRevocationList(object):
def __init__(self, backend, x509_crl):
self._backend = backend
self._x509_crl = x509_crl
def __eq__(self, other):
if not isinstance(other, x509.CertificateRevocationList):
return NotImplemented
res = self._backend._lib.X509_CRL_cmp(self._x509_crl, other._x509_crl)
return res == 0
def __ne__(self, other):
return not self == other
def fingerprint(self, algorithm):
h = hashes.Hash(algorithm, self._backend)
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_X509_CRL_bio(
bio, self._x509_crl
)
self._backend.openssl_assert(res == 1)
der = self._backend._read_mem_bio(bio)
h.update(der)
return h.finalize()
@property
def signature_hash_algorithm(self):
alg = self._backend._ffi.new("X509_ALGOR **")
self._backend._lib.X509_CRL_get0_signature(
self._backend._ffi.NULL, alg, self._x509_crl
)
self._backend.openssl_assert(alg[0] != self._backend._ffi.NULL)
oid = _obj2txt(self._backend, alg[0].algorithm)
try:
return x509._SIG_OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID:{0} not recognized".format(oid)
)
@property
def issuer(self):
issuer = self._backend._lib.X509_CRL_get_issuer(self._x509_crl)
self._backend.openssl_assert(issuer != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, issuer)
@property
def next_update(self):
nu = self._backend._lib.X509_CRL_get_nextUpdate(self._x509_crl)
self._backend.openssl_assert(nu != self._backend._ffi.NULL)
return _parse_asn1_time(self._backend, nu)
@property
def last_update(self):
lu = self._backend._lib.X509_CRL_get_lastUpdate(self._x509_crl)
self._backend.openssl_assert(lu != self._backend._ffi.NULL)
return _parse_asn1_time(self._backend, lu)
@property
def signature(self):
sig = self._backend._ffi.new("ASN1_BIT_STRING **")
self._backend._lib.X509_CRL_get0_signature(
sig, self._backend._ffi.NULL, self._x509_crl
)
self._backend.openssl_assert(sig[0] != self._backend._ffi.NULL)
return _asn1_string_to_bytes(self._backend, sig[0])
@property
def tbs_certlist_bytes(self):
pp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.i2d_re_X509_CRL_tbs(self._x509_crl, pp)
self._backend.openssl_assert(res > 0)
pp = self._backend._ffi.gc(
pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0])
)
return self._backend._ffi.buffer(pp[0], res)[:]
def public_bytes(self, encoding):
bio = self._backend._create_mem_bio_gc()
if encoding is serialization.Encoding.PEM:
res = self._backend._lib.PEM_write_bio_X509_CRL(
bio, self._x509_crl
)
elif encoding is serialization.Encoding.DER:
res = self._backend._lib.i2d_X509_CRL_bio(bio, self._x509_crl)
else:
raise TypeError("encoding must be an item from the Encoding enum")
self._backend.openssl_assert(res == 1)
return self._backend._read_mem_bio(bio)
def _revoked_cert(self, idx):
revoked = self._backend._lib.X509_CRL_get_REVOKED(self._x509_crl)
r = self._backend._lib.sk_X509_REVOKED_value(revoked, idx)
self._backend.openssl_assert(r != self._backend._ffi.NULL)
return _RevokedCertificate(self._backend, self, r)
def __iter__(self):
for i in range(len(self)):
yield self._revoked_cert(i)
def __getitem__(self, idx):
if isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
return [self._revoked_cert(i) for i in range(start, stop, step)]
else:
idx = operator.index(idx)
if idx < 0:
idx += len(self)
if not 0 <= idx < len(self):
raise IndexError
return self._revoked_cert(idx)
def __len__(self):
revoked = self._backend._lib.X509_CRL_get_REVOKED(self._x509_crl)
if revoked == self._backend._ffi.NULL:
return 0
else:
return self._backend._lib.sk_X509_REVOKED_num(revoked)
@property
def extensions(self):
return _CRL_EXTENSION_PARSER.parse(self._backend, self._x509_crl)
@utils.register_interface(x509.CertificateSigningRequest)
class _CertificateSigningRequest(object):
def __init__(self, backend, x509_req):
self._backend = backend
self._x509_req = x509_req
def __eq__(self, other):
if not isinstance(other, _CertificateSigningRequest):
return NotImplemented
self_bytes = self.public_bytes(serialization.Encoding.DER)
other_bytes = other.public_bytes(serialization.Encoding.DER)
return self_bytes == other_bytes
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.public_bytes(serialization.Encoding.DER))
def public_key(self):
pkey = self._backend._lib.X509_REQ_get_pubkey(self._x509_req)
self._backend.openssl_assert(pkey != self._backend._ffi.NULL)
pkey = self._backend._ffi.gc(pkey, self._backend._lib.EVP_PKEY_free)
return self._backend._evp_pkey_to_public_key(pkey)
@property
def subject(self):
subject = self._backend._lib.X509_REQ_get_subject_name(self._x509_req)
self._backend.openssl_assert(subject != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, subject)
@property
def signature_hash_algorithm(self):
alg = self._backend._ffi.new("X509_ALGOR **")
self._backend._lib.X509_REQ_get0_signature(
self._backend._ffi.NULL, alg, self._x509_req
)
self._backend.openssl_assert(alg[0] != self._backend._ffi.NULL)
oid = _obj2txt(self._backend, alg[0].algorithm)
try:
return x509._SIG_OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID:{0} not recognized".format(oid)
)
@property
def extensions(self):
x509_exts = self._backend._lib.X509_REQ_get_extensions(self._x509_req)
return _CSR_EXTENSION_PARSER.parse(self._backend, x509_exts)
def public_bytes(self, encoding):
bio = self._backend._create_mem_bio_gc()
if encoding is serialization.Encoding.PEM:
res = self._backend._lib.PEM_write_bio_X509_REQ(
bio, self._x509_req
)
elif encoding is serialization.Encoding.DER:
res = self._backend._lib.i2d_X509_REQ_bio(bio, self._x509_req)
else:
raise TypeError("encoding must be an item from the Encoding enum")
self._backend.openssl_assert(res == 1)
return self._backend._read_mem_bio(bio)
@property
def tbs_certrequest_bytes(self):
pp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.i2d_re_X509_REQ_tbs(self._x509_req, pp)
self._backend.openssl_assert(res > 0)
pp = self._backend._ffi.gc(
pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0])
)
return self._backend._ffi.buffer(pp[0], res)[:]
@property
def signature(self):
sig = self._backend._ffi.new("ASN1_BIT_STRING **")
self._backend._lib.X509_REQ_get0_signature(
sig, self._backend._ffi.NULL, self._x509_req
)
self._backend.openssl_assert(sig[0] != self._backend._ffi.NULL)
return _asn1_string_to_bytes(self._backend, sig[0])
@property
def is_signature_valid(self):
pkey = self._backend._lib.X509_REQ_get_pubkey(self._x509_req)
self._backend.openssl_assert(pkey != self._backend._ffi.NULL)
pkey = self._backend._ffi.gc(pkey, self._backend._lib.EVP_PKEY_free)
res = self._backend._lib.X509_REQ_verify(self._x509_req, pkey)
if res != 1:
self._backend._consume_errors()
return False
return True

View file

@ -0,0 +1,5 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function

View file

@ -0,0 +1,5 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function

View file

@ -0,0 +1,15 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.bindings._commoncrypto import ffi, lib
class Binding(object):
"""
CommonCrypto API wrapper.
"""
lib = lib
ffi = ffi

View file

@ -0,0 +1,5 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function

View file

@ -0,0 +1,431 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
# This is a temporary copy of all the CONDITIONAL_NAMES from _cffi_src so
# we can loop over them and delete them at runtime. It will be removed when
# cffi supports #if in cdef
CONDITIONAL_NAMES = {
"Cryptography_HAS_AES_WRAP": [
"AES_wrap_key",
"AES_unwrap_key",
],
"Cryptography_HAS_CMAC": [
"CMAC_CTX_new",
"CMAC_Init",
"CMAC_Update",
"CMAC_Final",
"CMAC_CTX_copy",
"CMAC_CTX_free",
],
"Cryptography_HAS_CMS": [
"BIO_new_CMS",
"i2d_CMS_bio_stream",
"PEM_write_bio_CMS_stream",
"CMS_final",
"CMS_sign",
"CMS_verify",
"CMS_encrypt",
"CMS_decrypt",
"CMS_add1_signer",
"CMS_TEXT",
"CMS_NOCERTS",
"CMS_NO_CONTENT_VERIFY",
"CMS_NO_ATTR_VERIFY",
"CMS_NOSIGS",
"CMS_NOINTERN",
"CMS_NO_SIGNER_CERT_VERIFY",
"CMS_NOVERIFY",
"CMS_DETACHED",
"CMS_BINARY",
"CMS_NOATTR",
"CMS_NOSMIMECAP",
"CMS_NOOLDMIMETYPE",
"CMS_CRLFEOL",
"CMS_STREAM",
"CMS_NOCRL",
"CMS_PARTIAL",
"CMS_REUSE_DIGEST",
"CMS_USE_KEYID",
"CMS_DEBUG_DECRYPT",
],
"Cryptography_HAS_CMS_BIO_FUNCTIONS": [
"BIO_new_CMS",
"i2d_CMS_bio_stream",
"PEM_write_bio_CMS_stream",
],
"Cryptography_HAS_EC": [
"OPENSSL_EC_NAMED_CURVE",
"EC_GROUP_new",
"EC_GROUP_free",
"EC_GROUP_clear_free",
"EC_GROUP_new_curve_GFp",
"EC_GROUP_new_by_curve_name",
"EC_GROUP_set_curve_GFp",
"EC_GROUP_get_curve_GFp",
"EC_GROUP_method_of",
"EC_GROUP_get0_generator",
"EC_GROUP_get_curve_name",
"EC_GROUP_get_degree",
"EC_GROUP_set_asn1_flag",
"EC_GROUP_set_point_conversion_form",
"EC_KEY_new",
"EC_KEY_free",
"EC_get_builtin_curves",
"EC_KEY_new_by_curve_name",
"EC_KEY_copy",
"EC_KEY_dup",
"EC_KEY_up_ref",
"EC_KEY_set_group",
"EC_KEY_get0_private_key",
"EC_KEY_set_private_key",
"EC_KEY_set_public_key",
"EC_KEY_get_enc_flags",
"EC_KEY_set_enc_flags",
"EC_KEY_set_conv_form",
"EC_KEY_set_asn1_flag",
"EC_KEY_precompute_mult",
"EC_KEY_generate_key",
"EC_KEY_check_key",
"EC_POINT_new",
"EC_POINT_free",
"EC_POINT_clear_free",
"EC_POINT_copy",
"EC_POINT_dup",
"EC_POINT_method_of",
"EC_POINT_set_to_infinity",
"EC_POINT_set_Jprojective_coordinates_GFp",
"EC_POINT_get_Jprojective_coordinates_GFp",
"EC_POINT_set_affine_coordinates_GFp",
"EC_POINT_get_affine_coordinates_GFp",
"EC_POINT_set_compressed_coordinates_GFp",
"EC_POINT_point2oct",
"EC_POINT_oct2point",
"EC_POINT_point2bn",
"EC_POINT_bn2point",
"EC_POINT_point2hex",
"EC_POINT_hex2point",
"EC_POINT_add",
"EC_POINT_dbl",
"EC_POINT_invert",
"EC_POINT_is_at_infinity",
"EC_POINT_is_on_curve",
"EC_POINT_cmp",
"EC_POINT_make_affine",
"EC_POINTs_make_affine",
"EC_POINTs_mul",
"EC_POINT_mul",
"EC_GROUP_precompute_mult",
"EC_GROUP_have_precompute_mult",
"EC_GFp_simple_method",
"EC_GFp_mont_method",
"EC_GFp_nist_method",
"EC_METHOD_get_field_type",
"EVP_PKEY_assign_EC_KEY",
"EVP_PKEY_get1_EC_KEY",
"EVP_PKEY_set1_EC_KEY",
"PEM_write_bio_ECPrivateKey",
"i2d_EC_PUBKEY",
"d2i_EC_PUBKEY",
"d2i_EC_PUBKEY_bio",
"i2d_EC_PUBKEY_bio",
"d2i_ECPrivateKey",
"d2i_ECPrivateKey_bio",
"i2d_ECPrivateKey",
"i2d_ECPrivateKey_bio",
"i2o_ECPublicKey",
"o2i_ECPublicKey",
"SSL_CTX_set_tmp_ecdh",
"POINT_CONVERSION_COMPRESSED",
"POINT_CONVERSION_UNCOMPRESSED",
"POINT_CONVERSION_HYBRID",
],
"Cryptography_HAS_EC_1_0_1": [
"EC_KEY_get_flags",
"EC_KEY_set_flags",
"EC_KEY_clear_flags",
"EC_KEY_set_public_key_affine_coordinates",
],
"Cryptography_HAS_EC2M": [
"EC_GF2m_simple_method",
"EC_POINT_set_affine_coordinates_GF2m",
"EC_POINT_get_affine_coordinates_GF2m",
"EC_POINT_set_compressed_coordinates_GF2m",
"EC_GROUP_set_curve_GF2m",
"EC_GROUP_get_curve_GF2m",
"EC_GROUP_new_curve_GF2m",
],
"Cryptography_HAS_EC_1_0_2": [
"EC_curve_nid2nist",
],
"Cryptography_HAS_ECDH": [
"ECDH_compute_key",
],
"Cryptography_HAS_ECDSA": [
"ECDSA_SIG_new",
"ECDSA_SIG_free",
"i2d_ECDSA_SIG",
"d2i_ECDSA_SIG",
"ECDSA_do_sign",
"ECDSA_do_sign_ex",
"ECDSA_do_verify",
"ECDSA_sign_setup",
"ECDSA_sign",
"ECDSA_sign_ex",
"ECDSA_verify",
"ECDSA_size",
],
"Cryptography_HAS_ENGINE_CRYPTODEV": [
"ENGINE_load_cryptodev"
],
"Cryptography_HAS_098H_ERROR_CODES": [
"ASN1_F_B64_READ_ASN1",
"ASN1_F_B64_WRITE_ASN1",
"ASN1_F_SMIME_READ_ASN1",
"ASN1_F_SMIME_TEXT",
"ASN1_R_NO_CONTENT_TYPE",
"ASN1_R_NO_MULTIPART_BODY_FAILURE",
"ASN1_R_NO_MULTIPART_BOUNDARY",
],
"Cryptography_HAS_098C_CAMELLIA_CODES": [
"EVP_F_CAMELLIA_INIT_KEY",
"EVP_R_CAMELLIA_KEY_SETUP_FAILED"
],
"Cryptography_HAS_EC_CODES": [
"EC_R_UNKNOWN_GROUP",
"EC_F_EC_GROUP_NEW_BY_CURVE_NAME"
],
"Cryptography_HAS_TLSEXT_ERROR_CODES": [
"SSL_TLSEXT_ERR_OK",
"SSL_TLSEXT_ERR_ALERT_WARNING",
"SSL_TLSEXT_ERR_ALERT_FATAL",
"SSL_TLSEXT_ERR_NOACK",
],
"Cryptography_HAS_RSA_R_PKCS_DECODING_ERROR": [
"RSA_R_PKCS_DECODING_ERROR"
],
"Cryptography_HAS_GCM": [
"EVP_CTRL_GCM_GET_TAG",
"EVP_CTRL_GCM_SET_TAG",
"EVP_CTRL_GCM_SET_IVLEN",
],
"Cryptography_HAS_PBKDF2_HMAC": [
"PKCS5_PBKDF2_HMAC"
],
"Cryptography_HAS_PKEY_CTX": [
"EVP_PKEY_CTX_new",
"EVP_PKEY_CTX_new_id",
"EVP_PKEY_CTX_dup",
"EVP_PKEY_CTX_free",
"EVP_PKEY_sign",
"EVP_PKEY_sign_init",
"EVP_PKEY_verify",
"EVP_PKEY_verify_init",
"Cryptography_EVP_PKEY_encrypt",
"EVP_PKEY_encrypt_init",
"Cryptography_EVP_PKEY_decrypt",
"EVP_PKEY_decrypt_init",
"EVP_PKEY_CTX_set_signature_md",
"EVP_PKEY_id",
"EVP_PKEY_CTX_set_rsa_padding",
"EVP_PKEY_CTX_set_rsa_pss_saltlen",
],
"Cryptography_HAS_ECDSA_SHA2_NIDS": [
"NID_ecdsa_with_SHA224",
"NID_ecdsa_with_SHA256",
"NID_ecdsa_with_SHA384",
"NID_ecdsa_with_SHA512",
],
"Cryptography_HAS_EGD": [
"RAND_egd",
"RAND_egd_bytes",
"RAND_query_egd_bytes",
],
"Cryptography_HAS_PSS_PADDING": [
"RSA_PKCS1_PSS_PADDING",
],
"Cryptography_HAS_MGF1_MD": [
"EVP_PKEY_CTX_set_rsa_mgf1_md",
],
"Cryptography_HAS_RSA_OAEP_MD": [
"EVP_PKEY_CTX_set_rsa_oaep_md",
],
"Cryptography_HAS_TLSv1_1": [
"SSL_OP_NO_TLSv1_1",
"TLSv1_1_method",
"TLSv1_1_server_method",
"TLSv1_1_client_method",
],
"Cryptography_HAS_TLSv1_2": [
"SSL_OP_NO_TLSv1_2",
"TLSv1_2_method",
"TLSv1_2_server_method",
"TLSv1_2_client_method",
],
"Cryptography_HAS_SSL3_METHOD": [
"SSLv3_method",
"SSLv3_client_method",
"SSLv3_server_method",
],
"Cryptography_HAS_TLSEXT_HOSTNAME": [
"SSL_set_tlsext_host_name",
"SSL_get_servername",
"SSL_CTX_set_tlsext_servername_callback",
],
"Cryptography_HAS_TLSEXT_STATUS_REQ_CB": [
"SSL_CTX_set_tlsext_status_cb",
"SSL_CTX_set_tlsext_status_arg"
],
"Cryptography_HAS_STATUS_REQ_OCSP_RESP": [
"SSL_set_tlsext_status_ocsp_resp",
"SSL_get_tlsext_status_ocsp_resp",
],
"Cryptography_HAS_TLSEXT_STATUS_REQ_TYPE": [
"SSL_set_tlsext_status_type",
],
"Cryptography_HAS_RELEASE_BUFFERS": [
"SSL_MODE_RELEASE_BUFFERS",
],
"Cryptography_HAS_OP_NO_COMPRESSION": [
"SSL_OP_NO_COMPRESSION",
],
"Cryptography_HAS_SSL_OP_MSIE_SSLV2_RSA_PADDING": [
"SSL_OP_MSIE_SSLV2_RSA_PADDING",
],
"Cryptography_HAS_SSL_OP_NO_TICKET": [
"SSL_OP_NO_TICKET",
],
"Cryptography_HAS_SSL_SET_SSL_CTX": [
"SSL_set_SSL_CTX",
"TLSEXT_NAMETYPE_host_name",
],
"Cryptography_HAS_NETBSD_D1_METH": [
"DTLSv1_method",
],
"Cryptography_HAS_NEXTPROTONEG": [
"SSL_CTX_set_next_protos_advertised_cb",
"SSL_CTX_set_next_proto_select_cb",
"SSL_select_next_proto",
"SSL_get0_next_proto_negotiated",
],
"Cryptography_HAS_SECURE_RENEGOTIATION": [
"SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION",
"SSL_OP_LEGACY_SERVER_CONNECT",
"SSL_get_secure_renegotiation_support",
],
"Cryptography_HAS_ALPN": [
"SSL_CTX_set_alpn_protos",
"SSL_set_alpn_protos",
"SSL_CTX_set_alpn_select_cb",
"SSL_get0_alpn_selected",
],
"Cryptography_HAS_COMPRESSION": [
"SSL_get_current_compression",
"SSL_get_current_expansion",
"SSL_COMP_get_name",
],
"Cryptography_HAS_GET_SERVER_TMP_KEY": [
"SSL_get_server_tmp_key",
],
"Cryptography_HAS_SSL_CTX_SET_CLIENT_CERT_ENGINE": [
"SSL_CTX_set_client_cert_engine",
],
"Cryptography_HAS_SSL_CTX_CLEAR_OPTIONS": [
"SSL_CTX_clear_options",
],
"Cryptography_HAS_102_VERIFICATION_ERROR_CODES": [
'X509_V_ERR_SUITE_B_INVALID_VERSION',
'X509_V_ERR_SUITE_B_INVALID_ALGORITHM',
'X509_V_ERR_SUITE_B_INVALID_CURVE',
'X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM',
'X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED',
'X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256',
'X509_V_ERR_HOSTNAME_MISMATCH',
'X509_V_ERR_EMAIL_MISMATCH',
'X509_V_ERR_IP_ADDRESS_MISMATCH'
],
"Cryptography_HAS_102_VERIFICATION_PARAMS": [
"X509_V_FLAG_SUITEB_128_LOS_ONLY",
"X509_V_FLAG_SUITEB_192_LOS",
"X509_V_FLAG_SUITEB_128_LOS",
"X509_VERIFY_PARAM_set1_host",
"X509_VERIFY_PARAM_set1_email",
"X509_VERIFY_PARAM_set1_ip",
"X509_VERIFY_PARAM_set1_ip_asc",
"X509_VERIFY_PARAM_set_hostflags",
],
"Cryptography_HAS_X509_V_FLAG_TRUSTED_FIRST": [
"X509_V_FLAG_TRUSTED_FIRST",
],
"Cryptography_HAS_X509_V_FLAG_PARTIAL_CHAIN": [
"X509_V_FLAG_PARTIAL_CHAIN",
],
"Cryptography_HAS_100_VERIFICATION_ERROR_CODES": [
'X509_V_ERR_DIFFERENT_CRL_SCOPE',
'X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE',
'X509_V_ERR_UNNESTED_RESOURCE',
'X509_V_ERR_PERMITTED_VIOLATION',
'X509_V_ERR_EXCLUDED_VIOLATION',
'X509_V_ERR_SUBTREE_MINMAX',
'X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE',
'X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX',
'X509_V_ERR_UNSUPPORTED_NAME_SYNTAX',
'X509_V_ERR_CRL_PATH_VALIDATION_ERROR',
],
"Cryptography_HAS_100_VERIFICATION_PARAMS": [
"Cryptography_HAS_100_VERIFICATION_PARAMS",
"X509_V_FLAG_EXTENDED_CRL_SUPPORT",
"X509_V_FLAG_USE_DELTAS",
],
"Cryptography_HAS_X509_V_FLAG_CHECK_SS_SIGNATURE": [
"X509_V_FLAG_CHECK_SS_SIGNATURE",
],
"Cryptography_HAS_SET_CERT_CB": [
"SSL_CTX_set_cert_cb",
"SSL_set_cert_cb",
],
"Cryptography_HAS_AES_CTR128_ENCRYPT": [
"AES_ctr128_encrypt",
],
"Cryptography_HAS_SSL_ST": [
"SSL_ST_BEFORE",
"SSL_ST_OK",
"SSL_ST_INIT",
"SSL_ST_RENEGOTIATE",
],
"Cryptography_HAS_TLS_ST": [
"TLS_ST_BEFORE",
"TLS_ST_OK",
],
"Cryptography_HAS_LOCKING_CALLBACKS": [
"CRYPTO_LOCK",
"CRYPTO_UNLOCK",
"CRYPTO_READ",
"CRYPTO_LOCK_SSL",
"CRYPTO_lock",
]
}

View file

@ -0,0 +1,250 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import collections
import os
import threading
import types
import warnings
from cryptography.exceptions import InternalError
from cryptography.hazmat.bindings._openssl import ffi, lib
from cryptography.hazmat.bindings.openssl._conditional import CONDITIONAL_NAMES
_OpenSSLError = collections.namedtuple("_OpenSSLError",
["code", "lib", "func", "reason"])
_OpenSSLErrorWithText = collections.namedtuple(
"_OpenSSLErrorWithText", ["code", "lib", "func", "reason", "reason_text"]
)
def _consume_errors(lib):
errors = []
while True:
code = lib.ERR_get_error()
if code == 0:
break
err_lib = lib.ERR_GET_LIB(code)
err_func = lib.ERR_GET_FUNC(code)
err_reason = lib.ERR_GET_REASON(code)
errors.append(_OpenSSLError(code, err_lib, err_func, err_reason))
return errors
def _openssl_assert(lib, ok):
if not ok:
errors = _consume_errors(lib)
errors_with_text = []
for err in errors:
err_text_reason = ffi.string(
lib.ERR_error_string(err.code, ffi.NULL)
)
errors_with_text.append(
_OpenSSLErrorWithText(
err.code, err.lib, err.func, err.reason, err_text_reason
)
)
raise InternalError(
"Unknown OpenSSL error. This error is commonly encountered when "
"another library is not cleaning up the OpenSSL error stack. If "
"you are using cryptography with another library that uses "
"OpenSSL try disabling it before reporting a bug. Otherwise "
"please file an issue at https://github.com/pyca/cryptography/"
"issues with information on how to reproduce "
"this. ({0!r})".format(errors_with_text),
errors_with_text
)
def ffi_callback(signature, name, **kwargs):
"""Callback dispatcher
The ffi_callback() dispatcher keeps callbacks compatible between dynamic
and static callbacks.
"""
def wrapper(func):
if lib.Cryptography_STATIC_CALLBACKS:
# def_extern() returns a decorator that sets the internal
# function pointer and returns the original function unmodified.
ffi.def_extern(name=name, **kwargs)(func)
callback = getattr(lib, name)
else:
# callback() wraps the function in a cdata function.
callback = ffi.callback(signature, **kwargs)(func)
return callback
return wrapper
@ffi_callback("int (*)(unsigned char *, int)",
name="Cryptography_rand_bytes",
error=-1)
def _osrandom_rand_bytes(buf, size):
signed = ffi.cast("char *", buf)
result = os.urandom(size)
signed[0:size] = result
return 1
@ffi_callback("int (*)(void)", name="Cryptography_rand_status")
def _osrandom_rand_status():
return 1
def build_conditional_library(lib, conditional_names):
conditional_lib = types.ModuleType("lib")
excluded_names = set()
for condition, names in conditional_names.items():
if not getattr(lib, condition):
excluded_names |= set(names)
for attr in dir(lib):
if attr not in excluded_names:
setattr(conditional_lib, attr, getattr(lib, attr))
return conditional_lib
class Binding(object):
"""
OpenSSL API wrapper.
"""
lib = None
ffi = ffi
_lib_loaded = False
_locks = None
_lock_cb_handle = None
_init_lock = threading.Lock()
_lock_init_lock = threading.Lock()
_osrandom_engine_id = ffi.new("const char[]", b"osrandom")
_osrandom_engine_name = ffi.new("const char[]", b"osrandom_engine")
_osrandom_method = ffi.new(
"RAND_METHOD *",
dict(bytes=_osrandom_rand_bytes,
pseudorand=_osrandom_rand_bytes,
status=_osrandom_rand_status)
)
def __init__(self):
self._ensure_ffi_initialized()
@classmethod
def _register_osrandom_engine(cls):
_openssl_assert(cls.lib, cls.lib.ERR_peek_error() == 0)
engine = cls.lib.ENGINE_new()
_openssl_assert(cls.lib, engine != cls.ffi.NULL)
try:
result = cls.lib.ENGINE_set_id(engine, cls._osrandom_engine_id)
_openssl_assert(cls.lib, result == 1)
result = cls.lib.ENGINE_set_name(engine, cls._osrandom_engine_name)
_openssl_assert(cls.lib, result == 1)
result = cls.lib.ENGINE_set_RAND(engine, cls._osrandom_method)
_openssl_assert(cls.lib, result == 1)
result = cls.lib.ENGINE_add(engine)
if result != 1:
errors = _consume_errors(cls.lib)
_openssl_assert(
cls.lib,
errors[0].reason == cls.lib.ENGINE_R_CONFLICTING_ENGINE_ID
)
finally:
result = cls.lib.ENGINE_free(engine)
_openssl_assert(cls.lib, result == 1)
@classmethod
def _ensure_ffi_initialized(cls):
with cls._init_lock:
if not cls._lib_loaded:
cls.lib = build_conditional_library(lib, CONDITIONAL_NAMES)
cls._lib_loaded = True
# initialize the SSL library
cls.lib.SSL_library_init()
# adds all ciphers/digests for EVP
cls.lib.OpenSSL_add_all_algorithms()
# loads error strings for libcrypto and libssl functions
cls.lib.SSL_load_error_strings()
cls._register_osrandom_engine()
@classmethod
def init_static_locks(cls):
with cls._lock_init_lock:
cls._ensure_ffi_initialized()
if not cls._lock_cb_handle:
wrapper = ffi_callback(
"void(int, int, const char *, int)",
name="Cryptography_locking_cb",
)
cls._lock_cb_handle = wrapper(cls._lock_cb)
# Use Python's implementation if available, importing _ssl triggers
# the setup for this.
__import__("_ssl")
if cls.lib.CRYPTO_get_locking_callback() != cls.ffi.NULL:
return
# If nothing else has setup a locking callback already, we set up
# our own
num_locks = cls.lib.CRYPTO_num_locks()
cls._locks = [threading.Lock() for n in range(num_locks)]
cls.lib.CRYPTO_set_locking_callback(cls._lock_cb_handle)
@classmethod
def _lock_cb(cls, mode, n, file, line):
lock = cls._locks[n]
if mode & cls.lib.CRYPTO_LOCK:
lock.acquire()
elif mode & cls.lib.CRYPTO_UNLOCK:
lock.release()
else:
raise RuntimeError(
"Unknown lock mode {0}: lock={1}, file={2}, line={3}.".format(
mode, n, file, line
)
)
def _verify_openssl_version(version):
if version < 0x10000000:
if os.environ.get("CRYPTOGRAPHY_ALLOW_OPENSSL_098"):
warnings.warn(
"OpenSSL version 0.9.8 is no longer supported by the OpenSSL "
"project, please upgrade. The next version of cryptography "
"will completely remove support for it.",
DeprecationWarning
)
else:
raise RuntimeError(
"You are linking against OpenSSL 0.9.8, which is no longer "
"support by the OpenSSL project. You need to upgrade to a "
"newer version of OpenSSL."
)
elif version < 0x10001000:
warnings.warn(
"OpenSSL versions less than 1.0.1 are no longer supported by the "
"OpenSSL project, please upgrade. A future version of "
"cryptography will drop support for these versions of OpenSSL.",
DeprecationWarning
)
# OpenSSL is not thread safe until the locks are initialized. We call this
# method in module scope so that it executes with the import lock. On
# Pythons < 3.4 this import lock is a global lock, which can prevent a race
# condition registering the OpenSSL locks. On Python 3.4+ the import lock
# is per module so this approach will not work.
Binding.init_static_locks()
_verify_openssl_version(Binding.lib.SSLeay())

View file

@ -0,0 +1,5 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function

View file

@ -0,0 +1,40 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class AsymmetricSignatureContext(object):
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes and returns nothing.
"""
@abc.abstractmethod
def finalize(self):
"""
Returns the signature as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class AsymmetricVerificationContext(object):
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes and returns nothing.
"""
@abc.abstractmethod
def verify(self):
"""
Raises an exception if the bytes provided to update do not match the
signature or the signature does not match the public key.
"""

View file

@ -0,0 +1,166 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
class DHPrivateNumbers(object):
def __init__(self, x, public_numbers):
if not isinstance(x, six.integer_types):
raise TypeError("x must be an integer.")
if not isinstance(public_numbers, DHPublicNumbers):
raise TypeError("public_numbers must be an instance of "
"DHPublicNumbers.")
self._x = x
self._public_numbers = public_numbers
def __eq__(self, other):
if not isinstance(other, DHPrivateNumbers):
return NotImplemented
return (
self._x == other._x and
self._public_numbers == other._public_numbers
)
def __ne__(self, other):
return not self == other
public_numbers = utils.read_only_property("_public_numbers")
x = utils.read_only_property("_x")
class DHPublicNumbers(object):
def __init__(self, y, parameter_numbers):
if not isinstance(y, six.integer_types):
raise TypeError("y must be an integer.")
if not isinstance(parameter_numbers, DHParameterNumbers):
raise TypeError(
"parameters must be an instance of DHParameterNumbers.")
self._y = y
self._parameter_numbers = parameter_numbers
def __eq__(self, other):
if not isinstance(other, DHPublicNumbers):
return NotImplemented
return (
self._y == other._y and
self._parameter_numbers == other._parameter_numbers
)
def __ne__(self, other):
return not self == other
y = utils.read_only_property("_y")
parameter_numbers = utils.read_only_property("_parameter_numbers")
class DHParameterNumbers(object):
def __init__(self, p, g):
if (
not isinstance(p, six.integer_types) or
not isinstance(g, six.integer_types)
):
raise TypeError("p and g must be integers")
self._p = p
self._g = g
def __eq__(self, other):
if not isinstance(other, DHParameterNumbers):
return NotImplemented
return (
self._p == other._p and
self._g == other._g
)
def __ne__(self, other):
return not self == other
p = utils.read_only_property("_p")
g = utils.read_only_property("_g")
@six.add_metaclass(abc.ABCMeta)
class DHParameters(object):
@abc.abstractmethod
def generate_private_key(self):
"""
Generates and returns a DHPrivateKey.
"""
@six.add_metaclass(abc.ABCMeta)
class DHParametersWithSerialization(DHParameters):
@abc.abstractmethod
def parameter_numbers(self):
"""
Returns a DHParameterNumbers.
"""
@six.add_metaclass(abc.ABCMeta)
class DHPrivateKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self):
"""
The DHPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self):
"""
The DHParameters object associated with this private key.
"""
@six.add_metaclass(abc.ABCMeta)
class DHPrivateKeyWithSerialization(DHPrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns a DHPrivateNumbers.
"""
@six.add_metaclass(abc.ABCMeta)
class DHPublicKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self):
"""
The DHParameters object associated with this public key.
"""
@six.add_metaclass(abc.ABCMeta)
class DHPublicKeyWithSerialization(DHPublicKey):
@abc.abstractmethod
def public_numbers(self):
"""
Returns a DHPublicNumbers.
"""

View file

@ -0,0 +1,242 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
@six.add_metaclass(abc.ABCMeta)
class DSAParameters(object):
@abc.abstractmethod
def generate_private_key(self):
"""
Generates and returns a DSAPrivateKey.
"""
@six.add_metaclass(abc.ABCMeta)
class DSAParametersWithNumbers(DSAParameters):
@abc.abstractmethod
def parameter_numbers(self):
"""
Returns a DSAParameterNumbers.
"""
@six.add_metaclass(abc.ABCMeta)
class DSAPrivateKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self):
"""
The DSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self):
"""
The DSAParameters object associated with this private key.
"""
@abc.abstractmethod
def signer(self, signature_algorithm):
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@six.add_metaclass(abc.ABCMeta)
class DSAPrivateKeyWithSerialization(DSAPrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns a DSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
Returns the key serialized as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class DSAPublicKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self):
"""
The DSAParameters object associated with this public key.
"""
@abc.abstractmethod
def verifier(self, signature, signature_algorithm):
"""
Returns an AsymmetricVerificationContext used for signing data.
"""
@abc.abstractmethod
def public_numbers(self):
"""
Returns a DSAPublicNumbers.
"""
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
Returns the key serialized as bytes.
"""
DSAPublicKeyWithSerialization = DSAPublicKey
def generate_parameters(key_size, backend):
return backend.generate_dsa_parameters(key_size)
def generate_private_key(key_size, backend):
return backend.generate_dsa_private_key_and_parameters(key_size)
def _check_dsa_parameters(parameters):
if utils.bit_length(parameters.p) not in [1024, 2048, 3072]:
raise ValueError("p must be exactly 1024, 2048, or 3072 bits long")
if utils.bit_length(parameters.q) not in [160, 256]:
raise ValueError("q must be exactly 160 or 256 bits long")
if not (1 < parameters.g < parameters.p):
raise ValueError("g, p don't satisfy 1 < g < p.")
def _check_dsa_private_numbers(numbers):
parameters = numbers.public_numbers.parameter_numbers
_check_dsa_parameters(parameters)
if numbers.x <= 0 or numbers.x >= parameters.q:
raise ValueError("x must be > 0 and < q.")
if numbers.public_numbers.y != pow(parameters.g, numbers.x, parameters.p):
raise ValueError("y must be equal to (g ** x % p).")
class DSAParameterNumbers(object):
def __init__(self, p, q, g):
if (
not isinstance(p, six.integer_types) or
not isinstance(q, six.integer_types) or
not isinstance(g, six.integer_types)
):
raise TypeError(
"DSAParameterNumbers p, q, and g arguments must be integers."
)
self._p = p
self._q = q
self._g = g
p = utils.read_only_property("_p")
q = utils.read_only_property("_q")
g = utils.read_only_property("_g")
def parameters(self, backend):
return backend.load_dsa_parameter_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAParameterNumbers):
return NotImplemented
return self.p == other.p and self.q == other.q and self.g == other.g
def __ne__(self, other):
return not self == other
def __repr__(self):
return (
"<DSAParameterNumbers(p={self.p}, q={self.q}, g={self.g})>".format(
self=self
)
)
class DSAPublicNumbers(object):
def __init__(self, y, parameter_numbers):
if not isinstance(y, six.integer_types):
raise TypeError("DSAPublicNumbers y argument must be an integer.")
if not isinstance(parameter_numbers, DSAParameterNumbers):
raise TypeError(
"parameter_numbers must be a DSAParameterNumbers instance."
)
self._y = y
self._parameter_numbers = parameter_numbers
y = utils.read_only_property("_y")
parameter_numbers = utils.read_only_property("_parameter_numbers")
def public_key(self, backend):
return backend.load_dsa_public_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAPublicNumbers):
return NotImplemented
return (
self.y == other.y and
self.parameter_numbers == other.parameter_numbers
)
def __ne__(self, other):
return not self == other
def __repr__(self):
return (
"<DSAPublicNumbers(y={self.y}, "
"parameter_numbers={self.parameter_numbers})>".format(self=self)
)
class DSAPrivateNumbers(object):
def __init__(self, x, public_numbers):
if not isinstance(x, six.integer_types):
raise TypeError("DSAPrivateNumbers x argument must be an integer.")
if not isinstance(public_numbers, DSAPublicNumbers):
raise TypeError(
"public_numbers must be a DSAPublicNumbers instance."
)
self._public_numbers = public_numbers
self._x = x
x = utils.read_only_property("_x")
public_numbers = utils.read_only_property("_public_numbers")
def private_key(self, backend):
return backend.load_dsa_private_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAPrivateNumbers):
return NotImplemented
return (
self.x == other.x and self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other

View file

@ -0,0 +1,352 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
@six.add_metaclass(abc.ABCMeta)
class EllipticCurve(object):
@abc.abstractproperty
def name(self):
"""
The name of the curve. e.g. secp256r1.
"""
@abc.abstractproperty
def key_size(self):
"""
The bit length of the base point of the curve.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurveSignatureAlgorithm(object):
@abc.abstractproperty
def algorithm(self):
"""
The digest algorithm used with this signature.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurvePrivateKey(object):
@abc.abstractmethod
def signer(self, signature_algorithm):
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def exchange(self, algorithm, peer_public_key):
"""
Performs a key exchange operation using the provided algorithm with the
provided peer's public key.
"""
@abc.abstractmethod
def public_key(self):
"""
The EllipticCurvePublicKey for this private key.
"""
@abc.abstractproperty
def curve(self):
"""
The EllipticCurve that this key is on.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurvePrivateKeyWithSerialization(EllipticCurvePrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns an EllipticCurvePrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
Returns the key serialized as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurvePublicKey(object):
@abc.abstractmethod
def verifier(self, signature, signature_algorithm):
"""
Returns an AsymmetricVerificationContext used for signing data.
"""
@abc.abstractproperty
def curve(self):
"""
The EllipticCurve that this key is on.
"""
@abc.abstractmethod
def public_numbers(self):
"""
Returns an EllipticCurvePublicNumbers.
"""
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
Returns the key serialized as bytes.
"""
EllipticCurvePublicKeyWithSerialization = EllipticCurvePublicKey
@utils.register_interface(EllipticCurve)
class SECT571R1(object):
name = "sect571r1"
key_size = 571
@utils.register_interface(EllipticCurve)
class SECT409R1(object):
name = "sect409r1"
key_size = 409
@utils.register_interface(EllipticCurve)
class SECT283R1(object):
name = "sect283r1"
key_size = 283
@utils.register_interface(EllipticCurve)
class SECT233R1(object):
name = "sect233r1"
key_size = 233
@utils.register_interface(EllipticCurve)
class SECT163R2(object):
name = "sect163r2"
key_size = 163
@utils.register_interface(EllipticCurve)
class SECT571K1(object):
name = "sect571k1"
key_size = 571
@utils.register_interface(EllipticCurve)
class SECT409K1(object):
name = "sect409k1"
key_size = 409
@utils.register_interface(EllipticCurve)
class SECT283K1(object):
name = "sect283k1"
key_size = 283
@utils.register_interface(EllipticCurve)
class SECT233K1(object):
name = "sect233k1"
key_size = 233
@utils.register_interface(EllipticCurve)
class SECT163K1(object):
name = "sect163k1"
key_size = 163
@utils.register_interface(EllipticCurve)
class SECP521R1(object):
name = "secp521r1"
key_size = 521
@utils.register_interface(EllipticCurve)
class SECP384R1(object):
name = "secp384r1"
key_size = 384
@utils.register_interface(EllipticCurve)
class SECP256R1(object):
name = "secp256r1"
key_size = 256
@utils.register_interface(EllipticCurve)
class SECP256K1(object):
name = "secp256k1"
key_size = 256
@utils.register_interface(EllipticCurve)
class SECP224R1(object):
name = "secp224r1"
key_size = 224
@utils.register_interface(EllipticCurve)
class SECP192R1(object):
name = "secp192r1"
key_size = 192
_CURVE_TYPES = {
"prime192v1": SECP192R1,
"prime256v1": SECP256R1,
"secp192r1": SECP192R1,
"secp224r1": SECP224R1,
"secp256r1": SECP256R1,
"secp384r1": SECP384R1,
"secp521r1": SECP521R1,
"secp256k1": SECP256K1,
"sect163k1": SECT163K1,
"sect233k1": SECT233K1,
"sect283k1": SECT283K1,
"sect409k1": SECT409K1,
"sect571k1": SECT571K1,
"sect163r2": SECT163R2,
"sect233r1": SECT233R1,
"sect283r1": SECT283R1,
"sect409r1": SECT409R1,
"sect571r1": SECT571R1,
}
@utils.register_interface(EllipticCurveSignatureAlgorithm)
class ECDSA(object):
def __init__(self, algorithm):
self._algorithm = algorithm
algorithm = utils.read_only_property("_algorithm")
def generate_private_key(curve, backend):
return backend.generate_elliptic_curve_private_key(curve)
class EllipticCurvePublicNumbers(object):
def __init__(self, x, y, curve):
if (
not isinstance(x, six.integer_types) or
not isinstance(y, six.integer_types)
):
raise TypeError("x and y must be integers.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
self._y = y
self._x = x
self._curve = curve
def public_key(self, backend):
return backend.load_elliptic_curve_public_numbers(self)
def encode_point(self):
# key_size is in bits. Convert to bytes and round up
byte_length = (self.curve.key_size + 7) // 8
return (
b'\x04' + utils.int_to_bytes(self.x, byte_length) +
utils.int_to_bytes(self.y, byte_length)
)
@classmethod
def from_encoded_point(cls, curve, data):
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
if data.startswith(b'\x04'):
# key_size is in bits. Convert to bytes and round up
byte_length = (curve.key_size + 7) // 8
if len(data) == 2 * byte_length + 1:
x = utils.int_from_bytes(data[1:byte_length + 1], 'big')
y = utils.int_from_bytes(data[byte_length + 1:], 'big')
return cls(x, y, curve)
else:
raise ValueError('Invalid elliptic curve point data length')
else:
raise ValueError('Unsupported elliptic curve point type')
curve = utils.read_only_property("_curve")
x = utils.read_only_property("_x")
y = utils.read_only_property("_y")
def __eq__(self, other):
if not isinstance(other, EllipticCurvePublicNumbers):
return NotImplemented
return (
self.x == other.x and
self.y == other.y and
self.curve.name == other.curve.name and
self.curve.key_size == other.curve.key_size
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.x, self.y, self.curve.name, self.curve.key_size))
def __repr__(self):
return (
"<EllipticCurvePublicNumbers(curve={0.curve.name}, x={0.x}, "
"y={0.y}>".format(self)
)
class EllipticCurvePrivateNumbers(object):
def __init__(self, private_value, public_numbers):
if not isinstance(private_value, six.integer_types):
raise TypeError("private_value must be an integer.")
if not isinstance(public_numbers, EllipticCurvePublicNumbers):
raise TypeError(
"public_numbers must be an EllipticCurvePublicNumbers "
"instance."
)
self._private_value = private_value
self._public_numbers = public_numbers
def private_key(self, backend):
return backend.load_elliptic_curve_private_numbers(self)
private_value = utils.read_only_property("_private_value")
public_numbers = utils.read_only_property("_public_numbers")
def __eq__(self, other):
if not isinstance(other, EllipticCurvePrivateNumbers):
return NotImplemented
return (
self.private_value == other.private_value and
self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.private_value, self.public_numbers))
class ECDH(object):
pass

View file

@ -0,0 +1,67 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
from cryptography.hazmat.primitives import hashes
@six.add_metaclass(abc.ABCMeta)
class AsymmetricPadding(object):
@abc.abstractproperty
def name(self):
"""
A string naming this padding (e.g. "PSS", "PKCS1").
"""
@utils.register_interface(AsymmetricPadding)
class PKCS1v15(object):
name = "EMSA-PKCS1-v1_5"
@utils.register_interface(AsymmetricPadding)
class PSS(object):
MAX_LENGTH = object()
name = "EMSA-PSS"
def __init__(self, mgf, salt_length):
self._mgf = mgf
if (not isinstance(salt_length, six.integer_types) and
salt_length is not self.MAX_LENGTH):
raise TypeError("salt_length must be an integer.")
if salt_length is not self.MAX_LENGTH and salt_length < 0:
raise ValueError("salt_length must be zero or greater.")
self._salt_length = salt_length
@utils.register_interface(AsymmetricPadding)
class OAEP(object):
name = "EME-OAEP"
def __init__(self, mgf, algorithm, label):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._mgf = mgf
self._algorithm = algorithm
self._label = label
class MGF1(object):
MAX_LENGTH = object()
def __init__(self, algorithm):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm

View file

@ -0,0 +1,364 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
from fractions import gcd
import six
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.backends.interfaces import RSABackend
@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKey(object):
@abc.abstractmethod
def signer(self, padding, algorithm):
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def decrypt(self, ciphertext, padding):
"""
Decrypts the provided ciphertext.
"""
@abc.abstractproperty
def key_size(self):
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_key(self):
"""
The RSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def sign(self, data, padding, algorithm):
"""
Signs the data.
"""
@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKeyWithSerialization(RSAPrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns an RSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
Returns the key serialized as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class RSAPublicKey(object):
@abc.abstractmethod
def verifier(self, signature, padding, algorithm):
"""
Returns an AsymmetricVerificationContext used for verifying signatures.
"""
@abc.abstractmethod
def encrypt(self, plaintext, padding):
"""
Encrypts the given plaintext.
"""
@abc.abstractproperty
def key_size(self):
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_numbers(self):
"""
Returns an RSAPublicNumbers
"""
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(self, signature, data, padding, algorithm):
"""
Verifies the signature of the data.
"""
RSAPublicKeyWithSerialization = RSAPublicKey
def generate_private_key(public_exponent, key_size, backend):
if not isinstance(backend, RSABackend):
raise UnsupportedAlgorithm(
"Backend object does not implement RSABackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
_verify_rsa_parameters(public_exponent, key_size)
return backend.generate_rsa_private_key(public_exponent, key_size)
def _verify_rsa_parameters(public_exponent, key_size):
if public_exponent < 3:
raise ValueError("public_exponent must be >= 3.")
if public_exponent & 1 == 0:
raise ValueError("public_exponent must be odd.")
if key_size < 512:
raise ValueError("key_size must be at least 512-bits.")
def _check_private_key_components(p, q, private_exponent, dmp1, dmq1, iqmp,
public_exponent, modulus):
if modulus < 3:
raise ValueError("modulus must be >= 3.")
if p >= modulus:
raise ValueError("p must be < modulus.")
if q >= modulus:
raise ValueError("q must be < modulus.")
if dmp1 >= modulus:
raise ValueError("dmp1 must be < modulus.")
if dmq1 >= modulus:
raise ValueError("dmq1 must be < modulus.")
if iqmp >= modulus:
raise ValueError("iqmp must be < modulus.")
if private_exponent >= modulus:
raise ValueError("private_exponent must be < modulus.")
if public_exponent < 3 or public_exponent >= modulus:
raise ValueError("public_exponent must be >= 3 and < modulus.")
if public_exponent & 1 == 0:
raise ValueError("public_exponent must be odd.")
if dmp1 & 1 == 0:
raise ValueError("dmp1 must be odd.")
if dmq1 & 1 == 0:
raise ValueError("dmq1 must be odd.")
if p * q != modulus:
raise ValueError("p*q must equal modulus.")
def _check_public_key_components(e, n):
if n < 3:
raise ValueError("n must be >= 3.")
if e < 3 or e >= n:
raise ValueError("e must be >= 3 and < n.")
if e & 1 == 0:
raise ValueError("e must be odd.")
def _modinv(e, m):
"""
Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
"""
x1, y1, x2, y2 = 1, 0, 0, 1
a, b = e, m
while b > 0:
q, r = divmod(a, b)
xn, yn = x1 - q * x2, y1 - q * y2
a, b, x1, y1, x2, y2 = b, r, x2, y2, xn, yn
return x1 % m
def rsa_crt_iqmp(p, q):
"""
Compute the CRT (q ** -1) % p value from RSA primes p and q.
"""
return _modinv(q, p)
def rsa_crt_dmp1(private_exponent, p):
"""
Compute the CRT private_exponent % (p - 1) value from the RSA
private_exponent and p.
"""
return private_exponent % (p - 1)
def rsa_crt_dmq1(private_exponent, q):
"""
Compute the CRT private_exponent % (q - 1) value from the RSA
private_exponent and q.
"""
return private_exponent % (q - 1)
# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000
def rsa_recover_prime_factors(n, e, d):
"""
Compute factors p and q from the private exponent d. We assume that n has
no more than two factors. This function is adapted from code in PyCrypto.
"""
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d * e - 1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t % 2 == 0:
t = t // 2
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = False
a = 2
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
k = t
# Cycle through all values a^{t*2^i}=a^k
while k < ktot:
cand = pow(a, k, n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
p = gcd(cand + 1, n)
spotted = True
break
k *= 2
# This value was not any good... let's try another!
a += 2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
q, r = divmod(n, p)
assert r == 0
return (p, q)
class RSAPrivateNumbers(object):
def __init__(self, p, q, d, dmp1, dmq1, iqmp,
public_numbers):
if (
not isinstance(p, six.integer_types) or
not isinstance(q, six.integer_types) or
not isinstance(d, six.integer_types) or
not isinstance(dmp1, six.integer_types) or
not isinstance(dmq1, six.integer_types) or
not isinstance(iqmp, six.integer_types)
):
raise TypeError(
"RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
" all be an integers."
)
if not isinstance(public_numbers, RSAPublicNumbers):
raise TypeError(
"RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
" instance."
)
self._p = p
self._q = q
self._d = d
self._dmp1 = dmp1
self._dmq1 = dmq1
self._iqmp = iqmp
self._public_numbers = public_numbers
p = utils.read_only_property("_p")
q = utils.read_only_property("_q")
d = utils.read_only_property("_d")
dmp1 = utils.read_only_property("_dmp1")
dmq1 = utils.read_only_property("_dmq1")
iqmp = utils.read_only_property("_iqmp")
public_numbers = utils.read_only_property("_public_numbers")
def private_key(self, backend):
return backend.load_rsa_private_numbers(self)
def __eq__(self, other):
if not isinstance(other, RSAPrivateNumbers):
return NotImplemented
return (
self.p == other.p and
self.q == other.q and
self.d == other.d and
self.dmp1 == other.dmp1 and
self.dmq1 == other.dmq1 and
self.iqmp == other.iqmp and
self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((
self.p,
self.q,
self.d,
self.dmp1,
self.dmq1,
self.iqmp,
self.public_numbers,
))
class RSAPublicNumbers(object):
def __init__(self, e, n):
if (
not isinstance(e, six.integer_types) or
not isinstance(n, six.integer_types)
):
raise TypeError("RSAPublicNumbers arguments must be integers.")
self._e = e
self._n = n
e = utils.read_only_property("_e")
n = utils.read_only_property("_n")
def public_key(self, backend):
return backend.load_rsa_public_numbers(self)
def __repr__(self):
return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
def __eq__(self, other):
if not isinstance(other, RSAPublicNumbers):
return NotImplemented
return self.e == other.e and self.n == other.n
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.e, self.n))

View file

@ -0,0 +1,71 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import warnings
from pyasn1.codec.der import decoder, encoder
from pyasn1.error import PyAsn1Error
from pyasn1.type import namedtype, univ
import six
from cryptography import utils
class _DSSSigValue(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('r', univ.Integer()),
namedtype.NamedType('s', univ.Integer())
)
def decode_rfc6979_signature(signature):
warnings.warn(
"decode_rfc6979_signature is deprecated and will "
"be removed in a future version, use decode_dss_signature instead.",
utils.DeprecatedIn10,
stacklevel=2
)
return decode_dss_signature(signature)
def decode_dss_signature(signature):
try:
data, remaining = decoder.decode(signature, asn1Spec=_DSSSigValue())
except PyAsn1Error:
raise ValueError("Invalid signature data. Unable to decode ASN.1")
if remaining:
raise ValueError(
"The signature contains bytes after the end of the ASN.1 sequence."
)
r = int(data.getComponentByName('r'))
s = int(data.getComponentByName('s'))
return (r, s)
def encode_rfc6979_signature(r, s):
warnings.warn(
"encode_rfc6979_signature is deprecated and will "
"be removed in a future version, use encode_dss_signature instead.",
utils.DeprecatedIn10,
stacklevel=2
)
return encode_dss_signature(r, s)
def encode_dss_signature(r, s):
if (
not isinstance(r, six.integer_types) or
not isinstance(s, six.integer_types)
):
raise ValueError("Both r and s must be integers")
sig = _DSSSigValue()
sig.setComponentByName('r', r)
sig.setComponentByName('s', s)
return encoder.encode(sig)

View file

@ -0,0 +1,20 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.primitives.ciphers.base import (
AEADCipherContext, AEADEncryptionContext, BlockCipherAlgorithm, Cipher,
CipherAlgorithm, CipherContext
)
__all__ = [
"Cipher",
"CipherAlgorithm",
"BlockCipherAlgorithm",
"CipherContext",
"AEADCipherContext",
"AEADEncryptionContext",
]

View file

@ -0,0 +1,140 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.hazmat.primitives.ciphers import (
BlockCipherAlgorithm, CipherAlgorithm
)
def _verify_key_size(algorithm, key):
# Verify that the key size matches the expected key size
if len(key) * 8 not in algorithm.key_sizes:
raise ValueError("Invalid key size ({0}) for {1}.".format(
len(key) * 8, algorithm.name
))
return key
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class AES(object):
name = "AES"
block_size = 128
key_sizes = frozenset([128, 192, 256])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class Camellia(object):
name = "camellia"
block_size = 128
key_sizes = frozenset([128, 192, 256])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class TripleDES(object):
name = "3DES"
block_size = 64
key_sizes = frozenset([64, 128, 192])
def __init__(self, key):
if len(key) == 8:
key += key + key
elif len(key) == 16:
key += key[:8]
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class Blowfish(object):
name = "Blowfish"
block_size = 64
key_sizes = frozenset(range(32, 449, 8))
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class CAST5(object):
name = "CAST5"
block_size = 64
key_sizes = frozenset(range(40, 129, 8))
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(CipherAlgorithm)
class ARC4(object):
name = "RC4"
key_sizes = frozenset([40, 56, 64, 80, 128, 160, 192, 256])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(CipherAlgorithm)
class IDEA(object):
name = "IDEA"
block_size = 64
key_sizes = frozenset([128])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class SEED(object):
name = "SEED"
block_size = 128
key_sizes = frozenset([128])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8

View file

@ -0,0 +1,203 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, AlreadyUpdated, NotYetFinalized, UnsupportedAlgorithm,
_Reasons
)
from cryptography.hazmat.backends.interfaces import CipherBackend
from cryptography.hazmat.primitives.ciphers import modes
@six.add_metaclass(abc.ABCMeta)
class CipherAlgorithm(object):
@abc.abstractproperty
def name(self):
"""
A string naming this mode (e.g. "AES", "Camellia").
"""
@abc.abstractproperty
def key_size(self):
"""
The size of the key being used as an integer in bits (e.g. 128, 256).
"""
@six.add_metaclass(abc.ABCMeta)
class BlockCipherAlgorithm(object):
@abc.abstractproperty
def block_size(self):
"""
The size of a block as an integer in bits (e.g. 64, 128).
"""
@six.add_metaclass(abc.ABCMeta)
class CipherContext(object):
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes through the cipher and returns the results
as bytes.
"""
@abc.abstractmethod
def finalize(self):
"""
Returns the results of processing the final block as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class AEADCipherContext(object):
@abc.abstractmethod
def authenticate_additional_data(self, data):
"""
Authenticates the provided bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class AEADEncryptionContext(object):
@abc.abstractproperty
def tag(self):
"""
Returns tag bytes. This is only available after encryption is
finalized.
"""
class Cipher(object):
def __init__(self, algorithm, mode, backend):
if not isinstance(backend, CipherBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement CipherBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, CipherAlgorithm):
raise TypeError("Expected interface of CipherAlgorithm.")
if mode is not None:
mode.validate_for_algorithm(algorithm)
self.algorithm = algorithm
self.mode = mode
self._backend = backend
def encryptor(self):
if isinstance(self.mode, modes.ModeWithAuthenticationTag):
if self.mode.tag is not None:
raise ValueError(
"Authentication tag must be None when encrypting."
)
ctx = self._backend.create_symmetric_encryption_ctx(
self.algorithm, self.mode
)
return self._wrap_ctx(ctx, encrypt=True)
def decryptor(self):
if isinstance(self.mode, modes.ModeWithAuthenticationTag):
if self.mode.tag is None:
raise ValueError(
"Authentication tag must be provided when decrypting."
)
ctx = self._backend.create_symmetric_decryption_ctx(
self.algorithm, self.mode
)
return self._wrap_ctx(ctx, encrypt=False)
def _wrap_ctx(self, ctx, encrypt):
if isinstance(self.mode, modes.ModeWithAuthenticationTag):
if encrypt:
return _AEADEncryptionContext(ctx)
else:
return _AEADCipherContext(ctx)
else:
return _CipherContext(ctx)
@utils.register_interface(CipherContext)
class _CipherContext(object):
def __init__(self, ctx):
self._ctx = ctx
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return self._ctx.update(data)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize()
self._ctx = None
return data
@utils.register_interface(AEADCipherContext)
@utils.register_interface(CipherContext)
class _AEADCipherContext(object):
def __init__(self, ctx):
self._ctx = ctx
self._bytes_processed = 0
self._aad_bytes_processed = 0
self._tag = None
self._updated = False
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
self._updated = True
self._bytes_processed += len(data)
if self._bytes_processed > self._ctx._mode._MAX_ENCRYPTED_BYTES:
raise ValueError(
"{0} has a maximum encrypted byte limit of {1}".format(
self._ctx._mode.name, self._ctx._mode._MAX_ENCRYPTED_BYTES
)
)
return self._ctx.update(data)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize()
self._tag = self._ctx.tag
self._ctx = None
return data
def authenticate_additional_data(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
if self._updated:
raise AlreadyUpdated("Update has been called on this context.")
self._aad_bytes_processed += len(data)
if self._aad_bytes_processed > self._ctx._mode._MAX_AAD_BYTES:
raise ValueError(
"{0} has a maximum AAD byte limit of {1}".format(
self._ctx._mode.name, self._ctx._mode._MAX_AAD_BYTES
)
)
self._ctx.authenticate_additional_data(data)
@utils.register_interface(AEADEncryptionContext)
class _AEADEncryptionContext(_AEADCipherContext):
@property
def tag(self):
if self._ctx is not None:
raise NotYetFinalized("You must finalize encryption before "
"getting the tag.")
return self._tag

View file

@ -0,0 +1,185 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
@six.add_metaclass(abc.ABCMeta)
class Mode(object):
@abc.abstractproperty
def name(self):
"""
A string naming this mode (e.g. "ECB", "CBC").
"""
@abc.abstractmethod
def validate_for_algorithm(self, algorithm):
"""
Checks that all the necessary invariants of this (mode, algorithm)
combination are met.
"""
@six.add_metaclass(abc.ABCMeta)
class ModeWithInitializationVector(object):
@abc.abstractproperty
def initialization_vector(self):
"""
The value of the initialization vector for this mode as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class ModeWithNonce(object):
@abc.abstractproperty
def nonce(self):
"""
The value of the nonce for this mode as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class ModeWithAuthenticationTag(object):
@abc.abstractproperty
def tag(self):
"""
The value of the tag supplied to the constructor of this mode.
"""
def _check_iv_length(self, algorithm):
if len(self.initialization_vector) * 8 != algorithm.block_size:
raise ValueError("Invalid IV size ({0}) for {1}.".format(
len(self.initialization_vector), self.name
))
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class CBC(object):
name = "CBC"
def __init__(self, initialization_vector):
if not isinstance(initialization_vector, bytes):
raise TypeError("initialization_vector must be bytes")
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_length
@utils.register_interface(Mode)
class ECB(object):
name = "ECB"
def validate_for_algorithm(self, algorithm):
pass
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class OFB(object):
name = "OFB"
def __init__(self, initialization_vector):
if not isinstance(initialization_vector, bytes):
raise TypeError("initialization_vector must be bytes")
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class CFB(object):
name = "CFB"
def __init__(self, initialization_vector):
if not isinstance(initialization_vector, bytes):
raise TypeError("initialization_vector must be bytes")
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class CFB8(object):
name = "CFB8"
def __init__(self, initialization_vector):
if not isinstance(initialization_vector, bytes):
raise TypeError("initialization_vector must be bytes")
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithNonce)
class CTR(object):
name = "CTR"
def __init__(self, nonce):
if not isinstance(nonce, bytes):
raise TypeError("nonce must be bytes")
self._nonce = nonce
nonce = utils.read_only_property("_nonce")
def validate_for_algorithm(self, algorithm):
if len(self.nonce) * 8 != algorithm.block_size:
raise ValueError("Invalid nonce size ({0}) for {1}.".format(
len(self.nonce), self.name
))
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
@utils.register_interface(ModeWithAuthenticationTag)
class GCM(object):
name = "GCM"
_MAX_ENCRYPTED_BYTES = (2 ** 39 - 256) // 8
_MAX_AAD_BYTES = (2 ** 64) // 8
def __init__(self, initialization_vector, tag=None, min_tag_length=16):
# len(initialization_vector) must in [1, 2 ** 64), but it's impossible
# to actually construct a bytes object that large, so we don't check
# for it
if min_tag_length < 4:
raise ValueError("min_tag_length must be >= 4")
if tag is not None and len(tag) < min_tag_length:
raise ValueError(
"Authentication tag must be {0} bytes or longer.".format(
min_tag_length)
)
if not isinstance(initialization_vector, bytes):
raise TypeError("initialization_vector must be bytes")
if tag is not None and not isinstance(tag, bytes):
raise TypeError("tag must be bytes or None")
self._initialization_vector = initialization_vector
self._tag = tag
tag = utils.read_only_property("_tag")
initialization_vector = utils.read_only_property("_initialization_vector")
def validate_for_algorithm(self, algorithm):
pass

View file

@ -0,0 +1,66 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import CMACBackend
from cryptography.hazmat.primitives import ciphers, interfaces
@utils.register_interface(interfaces.MACContext)
class CMAC(object):
def __init__(self, algorithm, backend, ctx=None):
if not isinstance(backend, CMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement CMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, ciphers.BlockCipherAlgorithm):
raise TypeError(
"Expected instance of BlockCipherAlgorithm."
)
self._algorithm = algorithm
self._backend = backend
if ctx is None:
self._ctx = self._backend.create_cmac_ctx(self._algorithm)
else:
self._ctx = ctx
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
if not isinstance(data, bytes):
raise TypeError("data must be bytes.")
self._ctx.update(data)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
def verify(self, signature):
if not isinstance(signature, bytes):
raise TypeError("signature must be bytes.")
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(signature)
def copy(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return CMAC(
self._algorithm,
backend=self._backend,
ctx=self._ctx.copy()
)

View file

@ -0,0 +1,26 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import hmac
from cryptography.hazmat.bindings._constant_time import lib
if hasattr(hmac, "compare_digest"):
def bytes_eq(a, b):
if not isinstance(a, bytes) or not isinstance(b, bytes):
raise TypeError("a and b must be bytes.")
return hmac.compare_digest(a, b)
else:
def bytes_eq(a, b):
if not isinstance(a, bytes) or not isinstance(b, bytes):
raise TypeError("a and b must be bytes.")
return lib.Cryptography_constant_time_bytes_eq(
a, len(a), b, len(b)
) == 1

View file

@ -0,0 +1,163 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HashBackend
@six.add_metaclass(abc.ABCMeta)
class HashAlgorithm(object):
@abc.abstractproperty
def name(self):
"""
A string naming this algorithm (e.g. "sha256", "md5").
"""
@abc.abstractproperty
def digest_size(self):
"""
The size of the resulting digest in bytes.
"""
@abc.abstractproperty
def block_size(self):
"""
The internal block size of the hash algorithm in bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class HashContext(object):
@abc.abstractproperty
def algorithm(self):
"""
A HashAlgorithm that will be used by this context.
"""
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes through the hash.
"""
@abc.abstractmethod
def finalize(self):
"""
Finalizes the hash context and returns the hash digest as bytes.
"""
@abc.abstractmethod
def copy(self):
"""
Return a HashContext that is a copy of the current context.
"""
@utils.register_interface(HashContext)
class Hash(object):
def __init__(self, algorithm, backend, ctx=None):
if not isinstance(backend, HashBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HashBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
self._backend = backend
if ctx is None:
self._ctx = self._backend.create_hash_ctx(self.algorithm)
else:
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
if not isinstance(data, bytes):
raise TypeError("data must be bytes.")
self._ctx.update(data)
def copy(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return Hash(
self.algorithm, backend=self._backend, ctx=self._ctx.copy()
)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
@utils.register_interface(HashAlgorithm)
class SHA1(object):
name = "sha1"
digest_size = 20
block_size = 64
@utils.register_interface(HashAlgorithm)
class SHA224(object):
name = "sha224"
digest_size = 28
block_size = 64
@utils.register_interface(HashAlgorithm)
class SHA256(object):
name = "sha256"
digest_size = 32
block_size = 64
@utils.register_interface(HashAlgorithm)
class SHA384(object):
name = "sha384"
digest_size = 48
block_size = 128
@utils.register_interface(HashAlgorithm)
class SHA512(object):
name = "sha512"
digest_size = 64
block_size = 128
@utils.register_interface(HashAlgorithm)
class RIPEMD160(object):
name = "ripemd160"
digest_size = 20
block_size = 64
@utils.register_interface(HashAlgorithm)
class Whirlpool(object):
name = "whirlpool"
digest_size = 64
block_size = 64
@utils.register_interface(HashAlgorithm)
class MD5(object):
name = "md5"
digest_size = 16
block_size = 64

View file

@ -0,0 +1,69 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import hashes, interfaces
@utils.register_interface(interfaces.MACContext)
@utils.register_interface(hashes.HashContext)
class HMAC(object):
def __init__(self, key, algorithm, backend, ctx=None):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
self._backend = backend
self._key = key
if ctx is None:
self._ctx = self._backend.create_hmac_ctx(key, self.algorithm)
else:
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
if not isinstance(data, bytes):
raise TypeError("data must be bytes.")
self._ctx.update(data)
def copy(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return HMAC(
self._key,
self.algorithm,
backend=self._backend,
ctx=self._ctx.copy()
)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
def verify(self, signature):
if not isinstance(signature, bytes):
raise TypeError("signature must be bytes.")
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(signature)

View file

@ -0,0 +1,37 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class MACContext(object):
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes.
"""
@abc.abstractmethod
def finalize(self):
"""
Returns the message authentication code as bytes.
"""
@abc.abstractmethod
def copy(self):
"""
Return a MACContext that is a copy of the current context.
"""
@abc.abstractmethod
def verify(self, signature):
"""
Checks if the generated message authentication code matches the
signature.
"""

View file

@ -0,0 +1,26 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class KeyDerivationFunction(object):
@abc.abstractmethod
def derive(self, key_material):
"""
Deterministically generates and returns a new key based on the existing
key material.
"""
@abc.abstractmethod
def verify(self, key_material, expected_key):
"""
Checks whether the key generated by the key material matches the
expected derived key. Raises an exception if they do not match.
"""

View file

@ -0,0 +1,125 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.backends.interfaces import HashBackend
from cryptography.hazmat.primitives import constant_time, hashes, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
def _int_to_u32be(n):
return struct.pack('>I', n)
def _common_args_checks(algorithm, length, otherinfo):
max_length = algorithm.digest_size * (2 ** 32 - 1)
if length > max_length:
raise ValueError(
"Can not derive keys larger than {0} bits.".format(
max_length
))
if not (otherinfo is None or isinstance(otherinfo, bytes)):
raise TypeError("otherinfo must be bytes.")
def _concatkdf_derive(key_material, length, auxfn, otherinfo):
if not isinstance(key_material, bytes):
raise TypeError("key_material must be bytes.")
output = [b""]
outlen = 0
counter = 1
while (length > outlen):
h = auxfn()
h.update(_int_to_u32be(counter))
h.update(key_material)
h.update(otherinfo)
output.append(h.finalize())
outlen += len(output[-1])
counter += 1
return b"".join(output)[:length]
@utils.register_interface(KeyDerivationFunction)
class ConcatKDFHash(object):
def __init__(self, algorithm, length, otherinfo, backend):
_common_args_checks(algorithm, length, otherinfo)
self._algorithm = algorithm
self._length = length
self._otherinfo = otherinfo
if self._otherinfo is None:
self._otherinfo = b""
if not isinstance(backend, HashBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HashBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._backend = backend
self._used = False
def _hash(self):
return hashes.Hash(self._algorithm, self._backend)
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
self._used = True
return _concatkdf_derive(key_material, self._length,
self._hash, self._otherinfo)
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey
@utils.register_interface(KeyDerivationFunction)
class ConcatKDFHMAC(object):
def __init__(self, algorithm, length, salt, otherinfo, backend):
_common_args_checks(algorithm, length, otherinfo)
self._algorithm = algorithm
self._length = length
self._otherinfo = otherinfo
if self._otherinfo is None:
self._otherinfo = b""
if not (salt is None or isinstance(salt, bytes)):
raise TypeError("salt must be bytes.")
if salt is None:
salt = b"\x00" * algorithm.block_size
self._salt = salt
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._backend = backend
self._used = False
def _hmac(self):
return hmac.HMAC(self._salt, self._algorithm, self._backend)
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
self._used = True
return _concatkdf_derive(key_material, self._length,
self._hmac, self._otherinfo)
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View file

@ -0,0 +1,116 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import six
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
@utils.register_interface(KeyDerivationFunction)
class HKDF(object):
def __init__(self, algorithm, length, salt, info, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._algorithm = algorithm
if not (salt is None or isinstance(salt, bytes)):
raise TypeError("salt must be bytes.")
if salt is None:
salt = b"\x00" * (self._algorithm.digest_size // 8)
self._salt = salt
self._backend = backend
self._hkdf_expand = HKDFExpand(self._algorithm, length, info, backend)
def _extract(self, key_material):
h = hmac.HMAC(self._salt, self._algorithm, backend=self._backend)
h.update(key_material)
return h.finalize()
def derive(self, key_material):
if not isinstance(key_material, bytes):
raise TypeError("key_material must be bytes.")
return self._hkdf_expand.derive(self._extract(key_material))
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey
@utils.register_interface(KeyDerivationFunction)
class HKDFExpand(object):
def __init__(self, algorithm, length, info, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._algorithm = algorithm
self._backend = backend
max_length = 255 * (algorithm.digest_size // 8)
if length > max_length:
raise ValueError(
"Can not derive keys larger than {0} octets.".format(
max_length
))
self._length = length
if not (info is None or isinstance(info, bytes)):
raise TypeError("info must be bytes.")
if info is None:
info = b""
self._info = info
self._used = False
def _expand(self, key_material):
output = [b""]
counter = 1
while (self._algorithm.digest_size // 8) * len(output) < self._length:
h = hmac.HMAC(key_material, self._algorithm, backend=self._backend)
h.update(output[-1])
h.update(self._info)
h.update(six.int2byte(counter))
output.append(h.finalize())
counter += 1
return b"".join(output)[:self._length]
def derive(self, key_material):
if not isinstance(key_material, bytes):
raise TypeError("key_material must be bytes.")
if self._used:
raise AlreadyFinalized
self._used = True
return self._expand(key_material)
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View file

@ -0,0 +1,148 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from enum import Enum
from six.moves import range
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time, hashes, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
class Mode(Enum):
CounterMode = "ctr"
class CounterLocation(Enum):
BeforeFixed = "before_fixed"
AfterFixed = "after_fixed"
@utils.register_interface(KeyDerivationFunction)
class KBKDFHMAC(object):
def __init__(self, algorithm, mode, length, rlen, llen,
location, label, context, fixed, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, hashes.HashAlgorithm):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported hash algorithm.",
_Reasons.UNSUPPORTED_HASH
)
if not backend.hmac_supported(algorithm):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported hmac algorithm.",
_Reasons.UNSUPPORTED_HASH
)
if not isinstance(mode, Mode):
raise TypeError("mode must be of type Mode")
if not isinstance(location, CounterLocation):
raise TypeError("location must be of type CounterLocation")
if (label or context) and fixed:
raise ValueError("When supplying fixed data, "
"label and context are ignored.")
if rlen is None or not self._valid_byte_length(rlen):
raise ValueError("rlen must be between 1 and 4")
if llen is None and fixed is None:
raise ValueError("Please specify an llen")
if llen is not None and not isinstance(llen, int):
raise TypeError("llen must be an integer")
if label is None:
label = b''
if context is None:
context = b''
if (not isinstance(label, bytes) or
not isinstance(context, bytes)):
raise TypeError('label and context must be of type bytes')
self._algorithm = algorithm
self._mode = mode
self._length = length
self._rlen = rlen
self._llen = llen
self._location = location
self._label = label
self._context = context
self._backend = backend
self._used = False
self._fixed_data = fixed
def _valid_byte_length(self, value):
if not isinstance(value, int):
raise TypeError('value must be of type int')
value_bin = utils.int_to_bytes(1, value)
if not 1 <= len(value_bin) <= 4:
return False
return True
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
if not isinstance(key_material, bytes):
raise TypeError('key_material must be bytes')
self._used = True
# inverse floor division (equivalent to ceiling)
rounds = -(-self._length // self._algorithm.digest_size)
output = [b'']
# For counter mode, the number of iterations shall not be
# larger than 2^r-1, where r <= 32 is the binary length of the counter
# This ensures that the counter values used as an input to the
# PRF will not repeat during a particular call to the KDF function.
r_bin = utils.int_to_bytes(1, self._rlen)
if rounds > pow(2, len(r_bin) * 8) - 1:
raise ValueError('There are too many iterations.')
for i in range(1, rounds + 1):
h = hmac.HMAC(key_material, self._algorithm, backend=self._backend)
counter = utils.int_to_bytes(i, self._rlen)
if self._location == CounterLocation.BeforeFixed:
h.update(counter)
h.update(self._generate_fixed_input())
if self._location == CounterLocation.AfterFixed:
h.update(counter)
output.append(h.finalize())
return b''.join(output)[:self._length]
def _generate_fixed_input(self):
if self._fixed_data and isinstance(self._fixed_data, bytes):
return self._fixed_data
l = utils.int_to_bytes(self._length * 8, self._llen)
return b"".join([self._label, b"\x00", self._context, l])
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View file

@ -0,0 +1,58 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import PBKDF2HMACBackend
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
@utils.register_interface(KeyDerivationFunction)
class PBKDF2HMAC(object):
def __init__(self, algorithm, length, salt, iterations, backend):
if not isinstance(backend, PBKDF2HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement PBKDF2HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not backend.pbkdf2_hmac_supported(algorithm):
raise UnsupportedAlgorithm(
"{0} is not supported for PBKDF2 by this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
self._used = False
self._algorithm = algorithm
self._length = length
if not isinstance(salt, bytes):
raise TypeError("salt must be bytes.")
self._salt = salt
self._iterations = iterations
self._backend = backend
def derive(self, key_material):
if self._used:
raise AlreadyFinalized("PBKDF2 instances can only be used once.")
self._used = True
if not isinstance(key_material, bytes):
raise TypeError("key_material must be bytes.")
return self._backend.derive_pbkdf2_hmac(
self._algorithm,
self._length,
self._salt,
self._iterations,
key_material
)
def verify(self, key_material, expected_key):
derived_key = self.derive(key_material)
if not constant_time.bytes_eq(derived_key, expected_key):
raise InvalidKey("Keys do not match.")

View file

@ -0,0 +1,70 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HashBackend
from cryptography.hazmat.primitives import constant_time, hashes
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
def _int_to_u32be(n):
return struct.pack('>I', n)
@utils.register_interface(KeyDerivationFunction)
class X963KDF(object):
def __init__(self, algorithm, length, sharedinfo, backend):
max_len = algorithm.digest_size * (2 ** 32 - 1)
if length > max_len:
raise ValueError(
"Can not derive keys larger than {0} bits.".format(max_len))
if not (sharedinfo is None or isinstance(sharedinfo, bytes)):
raise TypeError("sharedinfo must be bytes.")
self._algorithm = algorithm
self._length = length
self._sharedinfo = sharedinfo
if not isinstance(backend, HashBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HashBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._backend = backend
self._used = False
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
self._used = True
if not isinstance(key_material, bytes):
raise TypeError("key_material must be bytes.")
output = [b""]
outlen = 0
counter = 1
while self._length > outlen:
h = hashes.Hash(self._algorithm, self._backend)
h.update(key_material)
h.update(_int_to_u32be(counter))
if self._sharedinfo is not None:
h.update(self._sharedinfo)
output.append(h.finalize())
outlen += len(output[-1])
counter += 1
return b"".join(output)[:self._length]
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View file

@ -0,0 +1,85 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
from cryptography.hazmat.primitives.ciphers import Cipher
from cryptography.hazmat.primitives.ciphers.algorithms import AES
from cryptography.hazmat.primitives.ciphers.modes import ECB
from cryptography.hazmat.primitives.constant_time import bytes_eq
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
if len(key_to_wrap) < 16:
raise ValueError("The key to wrap must be at least 16 bytes")
if len(key_to_wrap) % 8 != 0:
raise ValueError("The key to wrap must be a multiple of 8 bytes")
# RFC 3394 Key Wrap - 2.2.1 (index method)
encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
n = len(r)
for j in range(6):
for i in range(n):
# every encryption operation is a discrete 16 byte chunk (because
# AES has a 128-bit block size) and since we're using ECB it is
# safe to reuse the encryptor for the entire operation
b = encryptor.update(a + r[i])
# pack/unpack are safe as these are always 64-bit chunks
a = struct.pack(
">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
)
r[i] = b[-8:]
assert encryptor.finalize() == b""
return a + b"".join(r)
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
if len(wrapped_key) < 24:
raise ValueError("Must be at least 24 bytes")
if len(wrapped_key) % 8 != 0:
raise ValueError("The wrapped key must be a multiple of 8 bytes")
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
# Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
a = r.pop(0)
n = len(r)
for j in reversed(range(6)):
for i in reversed(range(n)):
# pack/unpack are safe as these are always 64-bit chunks
atr = struct.pack(
">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
) + r[i]
# every decryption operation is a discrete 16 byte chunk so
# it is safe to reuse the decryptor for the entire operation
b = decryptor.update(atr)
a = b[:8]
r[i] = b[-8:]
assert decryptor.finalize() == b""
if not bytes_eq(a, aiv):
raise InvalidUnwrap()
return b"".join(r)
class InvalidUnwrap(Exception):
pass

View file

@ -0,0 +1,202 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
from cryptography.exceptions import AlreadyFinalized
from cryptography.hazmat.bindings._padding import lib
@six.add_metaclass(abc.ABCMeta)
class PaddingContext(object):
@abc.abstractmethod
def update(self, data):
"""
Pads the provided bytes and returns any available data as bytes.
"""
@abc.abstractmethod
def finalize(self):
"""
Finalize the padding, returns bytes.
"""
def _byte_padding_check(block_size):
if not (0 <= block_size < 256):
raise ValueError("block_size must be in range(0, 256).")
if block_size % 8 != 0:
raise ValueError("block_size must be a multiple of 8.")
def _byte_padding_update(buffer_, data, block_size):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
if not isinstance(data, bytes):
raise TypeError("data must be bytes.")
buffer_ += data
finished_blocks = len(buffer_) // (block_size // 8)
result = buffer_[:finished_blocks * (block_size // 8)]
buffer_ = buffer_[finished_blocks * (block_size // 8):]
return buffer_, result
def _byte_padding_pad(buffer_, block_size, paddingfn):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
pad_size = block_size // 8 - len(buffer_)
return buffer_ + paddingfn(pad_size)
def _byte_unpadding_update(buffer_, data, block_size):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
if not isinstance(data, bytes):
raise TypeError("data must be bytes.")
buffer_ += data
finished_blocks = max(len(buffer_) // (block_size // 8) - 1, 0)
result = buffer_[:finished_blocks * (block_size // 8)]
buffer_ = buffer_[finished_blocks * (block_size // 8):]
return buffer_, result
def _byte_unpadding_check(buffer_, block_size, checkfn):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
if len(buffer_) != block_size // 8:
raise ValueError("Invalid padding bytes.")
valid = checkfn(buffer_, block_size // 8)
if not valid:
raise ValueError("Invalid padding bytes.")
pad_size = six.indexbytes(buffer_, -1)
return buffer_[:-pad_size]
class PKCS7(object):
def __init__(self, block_size):
_byte_padding_check(block_size)
self.block_size = block_size
def padder(self):
return _PKCS7PaddingContext(self.block_size)
def unpadder(self):
return _PKCS7UnpaddingContext(self.block_size)
@utils.register_interface(PaddingContext)
class _PKCS7PaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_padding_update(
self._buffer, data, self.block_size)
return result
def _padding(self, size):
return six.int2byte(size) * size
def finalize(self):
result = _byte_padding_pad(
self._buffer, self.block_size, self._padding)
self._buffer = None
return result
@utils.register_interface(PaddingContext)
class _PKCS7UnpaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_unpadding_update(
self._buffer, data, self.block_size)
return result
def finalize(self):
result = _byte_unpadding_check(
self._buffer, self.block_size,
lib.Cryptography_check_pkcs7_padding)
self._buffer = None
return result
class ANSIX923(object):
def __init__(self, block_size):
_byte_padding_check(block_size)
self.block_size = block_size
def padder(self):
return _ANSIX923PaddingContext(self.block_size)
def unpadder(self):
return _ANSIX923UnpaddingContext(self.block_size)
@utils.register_interface(PaddingContext)
class _ANSIX923PaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_padding_update(
self._buffer, data, self.block_size)
return result
def _padding(self, size):
return six.int2byte(0) * (size - 1) + six.int2byte(size)
def finalize(self):
result = _byte_padding_pad(
self._buffer, self.block_size, self._padding)
self._buffer = None
return result
@utils.register_interface(PaddingContext)
class _ANSIX923UnpaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_unpadding_update(
self._buffer, data, self.block_size)
return result
def finalize(self):
result = _byte_unpadding_check(
self._buffer, self.block_size,
lib.Cryptography_check_ansix923_padding)
self._buffer = None
return result

View file

@ -0,0 +1,197 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import base64
import struct
from enum import Enum
import six
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa
def load_pem_private_key(data, password, backend):
return backend.load_pem_private_key(data, password)
def load_pem_public_key(data, backend):
return backend.load_pem_public_key(data)
def load_der_private_key(data, password, backend):
return backend.load_der_private_key(data, password)
def load_der_public_key(data, backend):
return backend.load_der_public_key(data)
def load_ssh_public_key(data, backend):
key_parts = data.split(b' ', 2)
if len(key_parts) < 2:
raise ValueError(
'Key is not in the proper format or contains extra data.')
key_type = key_parts[0]
if key_type == b'ssh-rsa':
loader = _load_ssh_rsa_public_key
elif key_type == b'ssh-dss':
loader = _load_ssh_dss_public_key
elif key_type in [
b'ecdsa-sha2-nistp256', b'ecdsa-sha2-nistp384', b'ecdsa-sha2-nistp521',
]:
loader = _load_ssh_ecdsa_public_key
else:
raise UnsupportedAlgorithm('Key type is not supported.')
key_body = key_parts[1]
try:
decoded_data = base64.b64decode(key_body)
except TypeError:
raise ValueError('Key is not in the proper format.')
inner_key_type, rest = _ssh_read_next_string(decoded_data)
if inner_key_type != key_type:
raise ValueError(
'Key header and key body contain different key type values.'
)
return loader(key_type, rest, backend)
def _load_ssh_rsa_public_key(key_type, decoded_data, backend):
e, rest = _ssh_read_next_mpint(decoded_data)
n, rest = _ssh_read_next_mpint(rest)
if rest:
raise ValueError('Key body contains extra bytes.')
return rsa.RSAPublicNumbers(e, n).public_key(backend)
def _load_ssh_dss_public_key(key_type, decoded_data, backend):
p, rest = _ssh_read_next_mpint(decoded_data)
q, rest = _ssh_read_next_mpint(rest)
g, rest = _ssh_read_next_mpint(rest)
y, rest = _ssh_read_next_mpint(rest)
if rest:
raise ValueError('Key body contains extra bytes.')
parameter_numbers = dsa.DSAParameterNumbers(p, q, g)
public_numbers = dsa.DSAPublicNumbers(y, parameter_numbers)
return public_numbers.public_key(backend)
def _load_ssh_ecdsa_public_key(expected_key_type, decoded_data, backend):
curve_name, rest = _ssh_read_next_string(decoded_data)
data, rest = _ssh_read_next_string(rest)
if expected_key_type != b"ecdsa-sha2-" + curve_name:
raise ValueError(
'Key header and key body contain different key type values.'
)
if rest:
raise ValueError('Key body contains extra bytes.')
curve = {
b"nistp256": ec.SECP256R1,
b"nistp384": ec.SECP384R1,
b"nistp521": ec.SECP521R1,
}[curve_name]()
if six.indexbytes(data, 0) != 4:
raise NotImplementedError(
"Compressed elliptic curve points are not supported"
)
numbers = ec.EllipticCurvePublicNumbers.from_encoded_point(curve, data)
return numbers.public_key(backend)
def _ssh_read_next_string(data):
"""
Retrieves the next RFC 4251 string value from the data.
While the RFC calls these strings, in Python they are bytes objects.
"""
if len(data) < 4:
raise ValueError("Key is not in the proper format")
str_len, = struct.unpack('>I', data[:4])
if len(data) < str_len + 4:
raise ValueError("Key is not in the proper format")
return data[4:4 + str_len], data[4 + str_len:]
def _ssh_read_next_mpint(data):
"""
Reads the next mpint from the data.
Currently, all mpints are interpreted as unsigned.
"""
mpint_data, rest = _ssh_read_next_string(data)
return (
utils.int_from_bytes(mpint_data, byteorder='big', signed=False), rest
)
def _ssh_write_string(data):
return struct.pack(">I", len(data)) + data
def _ssh_write_mpint(value):
data = utils.int_to_bytes(value)
if six.indexbytes(data, 0) & 0x80:
data = b"\x00" + data
return _ssh_write_string(data)
class Encoding(Enum):
PEM = "PEM"
DER = "DER"
OpenSSH = "OpenSSH"
class PrivateFormat(Enum):
PKCS8 = "PKCS8"
TraditionalOpenSSL = "TraditionalOpenSSL"
class PublicFormat(Enum):
SubjectPublicKeyInfo = "X.509 subjectPublicKeyInfo with PKCS#1"
PKCS1 = "Raw PKCS#1"
OpenSSH = "OpenSSH"
@six.add_metaclass(abc.ABCMeta)
class KeySerializationEncryption(object):
pass
@utils.register_interface(KeySerializationEncryption)
class BestAvailableEncryption(object):
def __init__(self, password):
if not isinstance(password, bytes) or len(password) == 0:
raise ValueError("Password must be 1 or more bytes.")
self.password = password
@utils.register_interface(KeySerializationEncryption)
class NoEncryption(object):
pass

View file

@ -0,0 +1,9 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
class InvalidToken(Exception):
pass

View file

@ -0,0 +1,67 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
import six
from cryptography.exceptions import (
UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time, hmac
from cryptography.hazmat.primitives.hashes import SHA1, SHA256, SHA512
from cryptography.hazmat.primitives.twofactor import InvalidToken
from cryptography.hazmat.primitives.twofactor.utils import _generate_uri
class HOTP(object):
def __init__(self, key, length, algorithm, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if len(key) < 16:
raise ValueError("Key length has to be at least 128 bits.")
if not isinstance(length, six.integer_types):
raise TypeError("Length parameter must be an integer type.")
if length < 6 or length > 8:
raise ValueError("Length of HOTP has to be between 6 to 8.")
if not isinstance(algorithm, (SHA1, SHA256, SHA512)):
raise TypeError("Algorithm must be SHA1, SHA256 or SHA512.")
self._key = key
self._length = length
self._algorithm = algorithm
self._backend = backend
def generate(self, counter):
truncated_value = self._dynamic_truncate(counter)
hotp = truncated_value % (10 ** self._length)
return "{0:0{1}}".format(hotp, self._length).encode()
def verify(self, hotp, counter):
if not constant_time.bytes_eq(self.generate(counter), hotp):
raise InvalidToken("Supplied HOTP value does not match.")
def _dynamic_truncate(self, counter):
ctx = hmac.HMAC(self._key, self._algorithm, self._backend)
ctx.update(struct.pack(">Q", counter))
hmac_value = ctx.finalize()
offset = six.indexbytes(hmac_value, len(hmac_value) - 1) & 0b1111
p = hmac_value[offset:offset + 4]
return struct.unpack(">I", p)[0] & 0x7fffffff
def get_provisioning_uri(self, account_name, counter, issuer):
return _generate_uri(self, "hotp", account_name, issuer, [
("counter", int(counter)),
])

View file

@ -0,0 +1,39 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.exceptions import (
UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.twofactor import InvalidToken
from cryptography.hazmat.primitives.twofactor.hotp import HOTP
from cryptography.hazmat.primitives.twofactor.utils import _generate_uri
class TOTP(object):
def __init__(self, key, length, algorithm, time_step, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._time_step = time_step
self._hotp = HOTP(key, length, algorithm, backend)
def generate(self, time):
counter = int(time / self._time_step)
return self._hotp.generate(counter)
def verify(self, totp, time):
if not constant_time.bytes_eq(self.generate(time), totp):
raise InvalidToken("Supplied TOTP value does not match.")
def get_provisioning_uri(self, account_name, issuer):
return _generate_uri(self._hotp, "totp", account_name, issuer, [
("period", int(self._time_step)),
])

View file

@ -0,0 +1,30 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import base64
from six.moves.urllib.parse import quote, urlencode
def _generate_uri(hotp, type_name, account_name, issuer, extra_parameters):
parameters = [
("digits", hotp._length),
("secret", base64.b32encode(hotp._key)),
("algorithm", hotp._algorithm.name.upper()),
]
if issuer is not None:
parameters.append(("issuer", issuer))
parameters.extend(extra_parameters)
uriparts = {
"type": type_name,
"label": ("%s:%s" % (quote(issuer), quote(account_name)) if issuer
else quote(account_name)),
"parameters": urlencode(parameters),
}
return "otpauth://{type}/{label}?{parameters}".format(**uriparts)

View file

@ -0,0 +1,138 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import binascii
import inspect
import struct
import sys
import warnings
# the functions deprecated in 1.0 and 1.4 are on an arbitrarily extended
# deprecation cycle and should not be removed until we agree on when that cycle
# ends.
DeprecatedIn10 = DeprecationWarning
DeprecatedIn14 = DeprecationWarning
def read_only_property(name):
return property(lambda self: getattr(self, name))
def register_interface(iface):
def register_decorator(klass):
verify_interface(iface, klass)
iface.register(klass)
return klass
return register_decorator
if hasattr(int, "from_bytes"):
int_from_bytes = int.from_bytes
else:
def int_from_bytes(data, byteorder, signed=False):
assert byteorder == 'big'
assert not signed
if len(data) % 4 != 0:
data = (b'\x00' * (4 - (len(data) % 4))) + data
result = 0
while len(data) > 0:
digit, = struct.unpack('>I', data[:4])
result = (result << 32) + digit
# TODO: this is quadratic in the length of data
data = data[4:]
return result
def int_to_bytes(integer, length=None):
hex_string = '%x' % integer
if length is None:
n = len(hex_string)
else:
n = length * 2
return binascii.unhexlify(hex_string.zfill(n + (n & 1)))
class InterfaceNotImplemented(Exception):
pass
if hasattr(inspect, "signature"):
signature = inspect.signature
else:
signature = inspect.getargspec
def verify_interface(iface, klass):
for method in iface.__abstractmethods__:
if not hasattr(klass, method):
raise InterfaceNotImplemented(
"{0} is missing a {1!r} method".format(klass, method)
)
if isinstance(getattr(iface, method), abc.abstractproperty):
# Can't properly verify these yet.
continue
sig = signature(getattr(iface, method))
actual = signature(getattr(klass, method))
if sig != actual:
raise InterfaceNotImplemented(
"{0}.{1}'s signature differs from the expected. Expected: "
"{2!r}. Received: {3!r}".format(
klass, method, sig, actual
)
)
if sys.version_info >= (2, 7):
def bit_length(x):
return x.bit_length()
else:
def bit_length(x):
return len(bin(x)) - (2 + (x <= 0))
class _DeprecatedValue(object):
def __init__(self, value, message, warning_class):
self.value = value
self.message = message
self.warning_class = warning_class
class _ModuleWithDeprecations(object):
def __init__(self, module):
self.__dict__["_module"] = module
def __getattr__(self, attr):
obj = getattr(self._module, attr)
if isinstance(obj, _DeprecatedValue):
warnings.warn(obj.message, obj.warning_class, stacklevel=2)
obj = obj.value
return obj
def __setattr__(self, attr, value):
setattr(self._module, attr, value)
def __delattr__(self, attr):
obj = getattr(self._module, attr)
if isinstance(obj, _DeprecatedValue):
warnings.warn(obj.message, obj.warning_class, stacklevel=2)
delattr(self._module, attr)
def __dir__(self):
return ["_module"] + dir(self._module)
def deprecated(value, module_name, message, warning_class):
module = sys.modules[module_name]
if not isinstance(module, _ModuleWithDeprecations):
sys.modules[module_name] = module = _ModuleWithDeprecations(module)
return _DeprecatedValue(value, message, warning_class)

View file

@ -0,0 +1,174 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.x509.base import (
Certificate, CertificateBuilder, CertificateRevocationList,
CertificateRevocationListBuilder,
CertificateSigningRequest, CertificateSigningRequestBuilder,
InvalidVersion, RevokedCertificate, RevokedCertificateBuilder,
Version, load_der_x509_certificate, load_der_x509_crl, load_der_x509_csr,
load_pem_x509_certificate, load_pem_x509_crl, load_pem_x509_csr,
)
from cryptography.x509.extensions import (
AccessDescription, AuthorityInformationAccess,
AuthorityKeyIdentifier, BasicConstraints, CRLDistributionPoints,
CRLNumber, CRLReason, CertificateIssuer, CertificatePolicies,
DistributionPoint, DuplicateExtension, ExtendedKeyUsage, Extension,
ExtensionNotFound, ExtensionType, Extensions, GeneralNames,
InhibitAnyPolicy, InvalidityDate, IssuerAlternativeName, KeyUsage,
NameConstraints, NoticeReference, OCSPNoCheck, PolicyConstraints,
PolicyInformation, ReasonFlags, SubjectAlternativeName,
SubjectKeyIdentifier, UnrecognizedExtension, UnsupportedExtension,
UserNotice
)
from cryptography.x509.general_name import (
DNSName, DirectoryName, GeneralName, IPAddress, OtherName, RFC822Name,
RegisteredID, UniformResourceIdentifier, UnsupportedGeneralNameType,
_GENERAL_NAMES
)
from cryptography.x509.name import Name, NameAttribute
from cryptography.x509.oid import (
AuthorityInformationAccessOID, CRLEntryExtensionOID,
CertificatePoliciesOID, ExtendedKeyUsageOID, ExtensionOID, NameOID,
ObjectIdentifier, SignatureAlgorithmOID, _SIG_OIDS_TO_HASH
)
OID_AUTHORITY_INFORMATION_ACCESS = ExtensionOID.AUTHORITY_INFORMATION_ACCESS
OID_AUTHORITY_KEY_IDENTIFIER = ExtensionOID.AUTHORITY_KEY_IDENTIFIER
OID_BASIC_CONSTRAINTS = ExtensionOID.BASIC_CONSTRAINTS
OID_CERTIFICATE_POLICIES = ExtensionOID.CERTIFICATE_POLICIES
OID_CRL_DISTRIBUTION_POINTS = ExtensionOID.CRL_DISTRIBUTION_POINTS
OID_EXTENDED_KEY_USAGE = ExtensionOID.EXTENDED_KEY_USAGE
OID_FRESHEST_CRL = ExtensionOID.FRESHEST_CRL
OID_INHIBIT_ANY_POLICY = ExtensionOID.INHIBIT_ANY_POLICY
OID_ISSUER_ALTERNATIVE_NAME = ExtensionOID.ISSUER_ALTERNATIVE_NAME
OID_KEY_USAGE = ExtensionOID.KEY_USAGE
OID_NAME_CONSTRAINTS = ExtensionOID.NAME_CONSTRAINTS
OID_OCSP_NO_CHECK = ExtensionOID.OCSP_NO_CHECK
OID_POLICY_CONSTRAINTS = ExtensionOID.POLICY_CONSTRAINTS
OID_POLICY_MAPPINGS = ExtensionOID.POLICY_MAPPINGS
OID_SUBJECT_ALTERNATIVE_NAME = ExtensionOID.SUBJECT_ALTERNATIVE_NAME
OID_SUBJECT_DIRECTORY_ATTRIBUTES = ExtensionOID.SUBJECT_DIRECTORY_ATTRIBUTES
OID_SUBJECT_INFORMATION_ACCESS = ExtensionOID.SUBJECT_INFORMATION_ACCESS
OID_SUBJECT_KEY_IDENTIFIER = ExtensionOID.SUBJECT_KEY_IDENTIFIER
OID_DSA_WITH_SHA1 = SignatureAlgorithmOID.DSA_WITH_SHA1
OID_DSA_WITH_SHA224 = SignatureAlgorithmOID.DSA_WITH_SHA224
OID_DSA_WITH_SHA256 = SignatureAlgorithmOID.DSA_WITH_SHA256
OID_ECDSA_WITH_SHA1 = SignatureAlgorithmOID.ECDSA_WITH_SHA1
OID_ECDSA_WITH_SHA224 = SignatureAlgorithmOID.ECDSA_WITH_SHA224
OID_ECDSA_WITH_SHA256 = SignatureAlgorithmOID.ECDSA_WITH_SHA256
OID_ECDSA_WITH_SHA384 = SignatureAlgorithmOID.ECDSA_WITH_SHA384
OID_ECDSA_WITH_SHA512 = SignatureAlgorithmOID.ECDSA_WITH_SHA512
OID_RSA_WITH_MD5 = SignatureAlgorithmOID.RSA_WITH_MD5
OID_RSA_WITH_SHA1 = SignatureAlgorithmOID.RSA_WITH_SHA1
OID_RSA_WITH_SHA224 = SignatureAlgorithmOID.RSA_WITH_SHA224
OID_RSA_WITH_SHA256 = SignatureAlgorithmOID.RSA_WITH_SHA256
OID_RSA_WITH_SHA384 = SignatureAlgorithmOID.RSA_WITH_SHA384
OID_RSA_WITH_SHA512 = SignatureAlgorithmOID.RSA_WITH_SHA512
OID_COMMON_NAME = NameOID.COMMON_NAME
OID_COUNTRY_NAME = NameOID.COUNTRY_NAME
OID_DOMAIN_COMPONENT = NameOID.DOMAIN_COMPONENT
OID_DN_QUALIFIER = NameOID.DN_QUALIFIER
OID_EMAIL_ADDRESS = NameOID.EMAIL_ADDRESS
OID_GENERATION_QUALIFIER = NameOID.GENERATION_QUALIFIER
OID_GIVEN_NAME = NameOID.GIVEN_NAME
OID_LOCALITY_NAME = NameOID.LOCALITY_NAME
OID_ORGANIZATIONAL_UNIT_NAME = NameOID.ORGANIZATIONAL_UNIT_NAME
OID_ORGANIZATION_NAME = NameOID.ORGANIZATION_NAME
OID_PSEUDONYM = NameOID.PSEUDONYM
OID_SERIAL_NUMBER = NameOID.SERIAL_NUMBER
OID_STATE_OR_PROVINCE_NAME = NameOID.STATE_OR_PROVINCE_NAME
OID_SURNAME = NameOID.SURNAME
OID_TITLE = NameOID.TITLE
OID_CLIENT_AUTH = ExtendedKeyUsageOID.CLIENT_AUTH
OID_CODE_SIGNING = ExtendedKeyUsageOID.CODE_SIGNING
OID_EMAIL_PROTECTION = ExtendedKeyUsageOID.EMAIL_PROTECTION
OID_OCSP_SIGNING = ExtendedKeyUsageOID.OCSP_SIGNING
OID_SERVER_AUTH = ExtendedKeyUsageOID.SERVER_AUTH
OID_TIME_STAMPING = ExtendedKeyUsageOID.TIME_STAMPING
OID_ANY_POLICY = CertificatePoliciesOID.ANY_POLICY
OID_CPS_QUALIFIER = CertificatePoliciesOID.CPS_QUALIFIER
OID_CPS_USER_NOTICE = CertificatePoliciesOID.CPS_USER_NOTICE
OID_CERTIFICATE_ISSUER = CRLEntryExtensionOID.CERTIFICATE_ISSUER
OID_CRL_REASON = CRLEntryExtensionOID.CRL_REASON
OID_INVALIDITY_DATE = CRLEntryExtensionOID.INVALIDITY_DATE
OID_CA_ISSUERS = AuthorityInformationAccessOID.CA_ISSUERS
OID_OCSP = AuthorityInformationAccessOID.OCSP
__all__ = [
"load_pem_x509_certificate",
"load_der_x509_certificate",
"load_pem_x509_csr",
"load_der_x509_csr",
"load_pem_x509_crl",
"load_der_x509_crl",
"InvalidVersion",
"DuplicateExtension",
"UnsupportedExtension",
"ExtensionNotFound",
"UnsupportedGeneralNameType",
"NameAttribute",
"Name",
"ObjectIdentifier",
"ExtensionType",
"Extensions",
"Extension",
"ExtendedKeyUsage",
"OCSPNoCheck",
"BasicConstraints",
"CRLNumber",
"KeyUsage",
"AuthorityInformationAccess",
"AccessDescription",
"CertificatePolicies",
"PolicyInformation",
"UserNotice",
"NoticeReference",
"SubjectKeyIdentifier",
"NameConstraints",
"CRLDistributionPoints",
"DistributionPoint",
"ReasonFlags",
"InhibitAnyPolicy",
"SubjectAlternativeName",
"IssuerAlternativeName",
"AuthorityKeyIdentifier",
"GeneralNames",
"GeneralName",
"RFC822Name",
"DNSName",
"UniformResourceIdentifier",
"RegisteredID",
"DirectoryName",
"IPAddress",
"OtherName",
"Certificate",
"CertificateRevocationList",
"CertificateRevocationListBuilder",
"CertificateSigningRequest",
"RevokedCertificate",
"RevokedCertificateBuilder",
"CertificateSigningRequestBuilder",
"CertificateBuilder",
"Version",
"_SIG_OIDS_TO_HASH",
"OID_CA_ISSUERS",
"OID_OCSP",
"_GENERAL_NAMES",
"CertificateIssuer",
"CRLReason",
"InvalidityDate",
"UnrecognizedExtension",
"PolicyConstraints",
]

View file

@ -0,0 +1,682 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import datetime
from enum import Enum
import six
from cryptography import utils
from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa
from cryptography.x509.extensions import Extension, ExtensionType
from cryptography.x509.name import Name
_UNIX_EPOCH = datetime.datetime(1970, 1, 1)
class Version(Enum):
v1 = 0
v3 = 2
def load_pem_x509_certificate(data, backend):
return backend.load_pem_x509_certificate(data)
def load_der_x509_certificate(data, backend):
return backend.load_der_x509_certificate(data)
def load_pem_x509_csr(data, backend):
return backend.load_pem_x509_csr(data)
def load_der_x509_csr(data, backend):
return backend.load_der_x509_csr(data)
def load_pem_x509_crl(data, backend):
return backend.load_pem_x509_crl(data)
def load_der_x509_crl(data, backend):
return backend.load_der_x509_crl(data)
class InvalidVersion(Exception):
def __init__(self, msg, parsed_version):
super(InvalidVersion, self).__init__(msg)
self.parsed_version = parsed_version
@six.add_metaclass(abc.ABCMeta)
class Certificate(object):
@abc.abstractmethod
def fingerprint(self, algorithm):
"""
Returns bytes using digest passed.
"""
@abc.abstractproperty
def serial_number(self):
"""
Returns certificate serial number
"""
@abc.abstractproperty
def version(self):
"""
Returns the certificate version
"""
@abc.abstractmethod
def public_key(self):
"""
Returns the public key
"""
@abc.abstractproperty
def not_valid_before(self):
"""
Not before time (represented as UTC datetime)
"""
@abc.abstractproperty
def not_valid_after(self):
"""
Not after time (represented as UTC datetime)
"""
@abc.abstractproperty
def issuer(self):
"""
Returns the issuer name object.
"""
@abc.abstractproperty
def subject(self):
"""
Returns the subject name object.
"""
@abc.abstractproperty
def signature_hash_algorithm(self):
"""
Returns a HashAlgorithm corresponding to the type of the digest signed
in the certificate.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns an Extensions object.
"""
@abc.abstractproperty
def signature(self):
"""
Returns the signature bytes.
"""
@abc.abstractproperty
def tbs_certificate_bytes(self):
"""
Returns the tbsCertificate payload bytes as defined in RFC 5280.
"""
@abc.abstractmethod
def __eq__(self, other):
"""
Checks equality.
"""
@abc.abstractmethod
def __ne__(self, other):
"""
Checks not equal.
"""
@abc.abstractmethod
def __hash__(self):
"""
Computes a hash.
"""
@abc.abstractmethod
def public_bytes(self, encoding):
"""
Serializes the certificate to PEM or DER format.
"""
@six.add_metaclass(abc.ABCMeta)
class CertificateRevocationList(object):
@abc.abstractmethod
def public_bytes(self, encoding):
"""
Serializes the CRL to PEM or DER format.
"""
@abc.abstractmethod
def fingerprint(self, algorithm):
"""
Returns bytes using digest passed.
"""
@abc.abstractproperty
def signature_hash_algorithm(self):
"""
Returns a HashAlgorithm corresponding to the type of the digest signed
in the certificate.
"""
@abc.abstractproperty
def issuer(self):
"""
Returns the X509Name with the issuer of this CRL.
"""
@abc.abstractproperty
def next_update(self):
"""
Returns the date of next update for this CRL.
"""
@abc.abstractproperty
def last_update(self):
"""
Returns the date of last update for this CRL.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns an Extensions object containing a list of CRL extensions.
"""
@abc.abstractproperty
def signature(self):
"""
Returns the signature bytes.
"""
@abc.abstractproperty
def tbs_certlist_bytes(self):
"""
Returns the tbsCertList payload bytes as defined in RFC 5280.
"""
@abc.abstractmethod
def __eq__(self, other):
"""
Checks equality.
"""
@abc.abstractmethod
def __ne__(self, other):
"""
Checks not equal.
"""
@six.add_metaclass(abc.ABCMeta)
class CertificateSigningRequest(object):
@abc.abstractmethod
def __eq__(self, other):
"""
Checks equality.
"""
@abc.abstractmethod
def __ne__(self, other):
"""
Checks not equal.
"""
@abc.abstractmethod
def __hash__(self):
"""
Computes a hash.
"""
@abc.abstractmethod
def public_key(self):
"""
Returns the public key
"""
@abc.abstractproperty
def subject(self):
"""
Returns the subject name object.
"""
@abc.abstractproperty
def signature_hash_algorithm(self):
"""
Returns a HashAlgorithm corresponding to the type of the digest signed
in the certificate.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns the extensions in the signing request.
"""
@abc.abstractmethod
def public_bytes(self, encoding):
"""
Encodes the request to PEM or DER format.
"""
@abc.abstractproperty
def signature(self):
"""
Returns the signature bytes.
"""
@abc.abstractproperty
def tbs_certrequest_bytes(self):
"""
Returns the PKCS#10 CertificationRequestInfo bytes as defined in RFC
2986.
"""
@abc.abstractproperty
def is_signature_valid(self):
"""
Verifies signature of signing request.
"""
@six.add_metaclass(abc.ABCMeta)
class RevokedCertificate(object):
@abc.abstractproperty
def serial_number(self):
"""
Returns the serial number of the revoked certificate.
"""
@abc.abstractproperty
def revocation_date(self):
"""
Returns the date of when this certificate was revoked.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns an Extensions object containing a list of Revoked extensions.
"""
class CertificateSigningRequestBuilder(object):
def __init__(self, subject_name=None, extensions=[]):
"""
Creates an empty X.509 certificate request (v1).
"""
self._subject_name = subject_name
self._extensions = extensions
def subject_name(self, name):
"""
Sets the certificate requestor's distinguished name.
"""
if not isinstance(name, Name):
raise TypeError('Expecting x509.Name object.')
if self._subject_name is not None:
raise ValueError('The subject name may only be set once.')
return CertificateSigningRequestBuilder(name, self._extensions)
def add_extension(self, extension, critical):
"""
Adds an X.509 extension to the certificate request.
"""
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
# TODO: This is quadratic in the number of extensions
for e in self._extensions:
if e.oid == extension.oid:
raise ValueError('This extension has already been set.')
return CertificateSigningRequestBuilder(
self._subject_name, self._extensions + [extension]
)
def sign(self, private_key, algorithm, backend):
"""
Signs the request using the requestor's private key.
"""
if self._subject_name is None:
raise ValueError("A CertificateSigningRequest must have a subject")
return backend.create_x509_csr(self, private_key, algorithm)
class CertificateBuilder(object):
def __init__(self, issuer_name=None, subject_name=None,
public_key=None, serial_number=None, not_valid_before=None,
not_valid_after=None, extensions=[]):
self._version = Version.v3
self._issuer_name = issuer_name
self._subject_name = subject_name
self._public_key = public_key
self._serial_number = serial_number
self._not_valid_before = not_valid_before
self._not_valid_after = not_valid_after
self._extensions = extensions
def issuer_name(self, name):
"""
Sets the CA's distinguished name.
"""
if not isinstance(name, Name):
raise TypeError('Expecting x509.Name object.')
if self._issuer_name is not None:
raise ValueError('The issuer name may only be set once.')
return CertificateBuilder(
name, self._subject_name, self._public_key,
self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def subject_name(self, name):
"""
Sets the requestor's distinguished name.
"""
if not isinstance(name, Name):
raise TypeError('Expecting x509.Name object.')
if self._subject_name is not None:
raise ValueError('The subject name may only be set once.')
return CertificateBuilder(
self._issuer_name, name, self._public_key,
self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def public_key(self, key):
"""
Sets the requestor's public key (as found in the signing request).
"""
if not isinstance(key, (dsa.DSAPublicKey, rsa.RSAPublicKey,
ec.EllipticCurvePublicKey)):
raise TypeError('Expecting one of DSAPublicKey, RSAPublicKey,'
' or EllipticCurvePublicKey.')
if self._public_key is not None:
raise ValueError('The public key may only be set once.')
return CertificateBuilder(
self._issuer_name, self._subject_name, key,
self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def serial_number(self, number):
"""
Sets the certificate serial number.
"""
if not isinstance(number, six.integer_types):
raise TypeError('Serial number must be of integral type.')
if self._serial_number is not None:
raise ValueError('The serial number may only be set once.')
if number < 0:
raise ValueError('The serial number should be non-negative.')
if utils.bit_length(number) > 160: # As defined in RFC 5280
raise ValueError('The serial number should not be more than 160 '
'bits.')
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def not_valid_before(self, time):
"""
Sets the certificate activation time.
"""
if not isinstance(time, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._not_valid_before is not None:
raise ValueError('The not valid before may only be set once.')
if time <= _UNIX_EPOCH:
raise ValueError('The not valid before date must be after the unix'
' epoch (1970 January 1).')
if self._not_valid_after is not None and time > self._not_valid_after:
raise ValueError(
'The not valid before date must be before the not valid after '
'date.'
)
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, self._serial_number, time,
self._not_valid_after, self._extensions
)
def not_valid_after(self, time):
"""
Sets the certificate expiration time.
"""
if not isinstance(time, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._not_valid_after is not None:
raise ValueError('The not valid after may only be set once.')
if time <= _UNIX_EPOCH:
raise ValueError('The not valid after date must be after the unix'
' epoch (1970 January 1).')
if (self._not_valid_before is not None and
time < self._not_valid_before):
raise ValueError(
'The not valid after date must be after the not valid before '
'date.'
)
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, self._serial_number, self._not_valid_before,
time, self._extensions
)
def add_extension(self, extension, critical):
"""
Adds an X.509 extension to the certificate.
"""
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
# TODO: This is quadratic in the number of extensions
for e in self._extensions:
if e.oid == extension.oid:
raise ValueError('This extension has already been set.')
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions + [extension]
)
def sign(self, private_key, algorithm, backend):
"""
Signs the certificate using the CA's private key.
"""
if self._subject_name is None:
raise ValueError("A certificate must have a subject name")
if self._issuer_name is None:
raise ValueError("A certificate must have an issuer name")
if self._serial_number is None:
raise ValueError("A certificate must have a serial number")
if self._not_valid_before is None:
raise ValueError("A certificate must have a not valid before time")
if self._not_valid_after is None:
raise ValueError("A certificate must have a not valid after time")
if self._public_key is None:
raise ValueError("A certificate must have a public key")
return backend.create_x509_certificate(self, private_key, algorithm)
class CertificateRevocationListBuilder(object):
def __init__(self, issuer_name=None, last_update=None, next_update=None,
extensions=[], revoked_certificates=[]):
self._issuer_name = issuer_name
self._last_update = last_update
self._next_update = next_update
self._extensions = extensions
self._revoked_certificates = revoked_certificates
def issuer_name(self, issuer_name):
if not isinstance(issuer_name, Name):
raise TypeError('Expecting x509.Name object.')
if self._issuer_name is not None:
raise ValueError('The issuer name may only be set once.')
return CertificateRevocationListBuilder(
issuer_name, self._last_update, self._next_update,
self._extensions, self._revoked_certificates
)
def last_update(self, last_update):
if not isinstance(last_update, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._last_update is not None:
raise ValueError('Last update may only be set once.')
if last_update <= _UNIX_EPOCH:
raise ValueError('The last update date must be after the unix'
' epoch (1970 January 1).')
if self._next_update is not None and last_update > self._next_update:
raise ValueError(
'The last update date must be before the next update date.'
)
return CertificateRevocationListBuilder(
self._issuer_name, last_update, self._next_update,
self._extensions, self._revoked_certificates
)
def next_update(self, next_update):
if not isinstance(next_update, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._next_update is not None:
raise ValueError('Last update may only be set once.')
if next_update <= _UNIX_EPOCH:
raise ValueError('The last update date must be after the unix'
' epoch (1970 January 1).')
if self._last_update is not None and next_update < self._last_update:
raise ValueError(
'The next update date must be after the last update date.'
)
return CertificateRevocationListBuilder(
self._issuer_name, self._last_update, next_update,
self._extensions, self._revoked_certificates
)
def add_extension(self, extension, critical):
"""
Adds an X.509 extension to the certificate revocation list.
"""
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
# TODO: This is quadratic in the number of extensions
for e in self._extensions:
if e.oid == extension.oid:
raise ValueError('This extension has already been set.')
return CertificateRevocationListBuilder(
self._issuer_name, self._last_update, self._next_update,
self._extensions + [extension], self._revoked_certificates
)
def add_revoked_certificate(self, revoked_certificate):
"""
Adds a revoked certificate to the CRL.
"""
if not isinstance(revoked_certificate, RevokedCertificate):
raise TypeError("Must be an instance of RevokedCertificate")
return CertificateRevocationListBuilder(
self._issuer_name, self._last_update,
self._next_update, self._extensions,
self._revoked_certificates + [revoked_certificate]
)
def sign(self, private_key, algorithm, backend):
if self._issuer_name is None:
raise ValueError("A CRL must have an issuer name")
if self._last_update is None:
raise ValueError("A CRL must have a last update time")
if self._next_update is None:
raise ValueError("A CRL must have a next update time")
return backend.create_x509_crl(self, private_key, algorithm)
class RevokedCertificateBuilder(object):
def __init__(self, serial_number=None, revocation_date=None,
extensions=[]):
self._serial_number = serial_number
self._revocation_date = revocation_date
self._extensions = extensions
def serial_number(self, number):
if not isinstance(number, six.integer_types):
raise TypeError('Serial number must be of integral type.')
if self._serial_number is not None:
raise ValueError('The serial number may only be set once.')
if number < 0:
raise ValueError('The serial number should be non-negative.')
if utils.bit_length(number) > 160: # As defined in RFC 5280
raise ValueError('The serial number should not be more than 160 '
'bits.')
return RevokedCertificateBuilder(
number, self._revocation_date, self._extensions
)
def revocation_date(self, time):
if not isinstance(time, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._revocation_date is not None:
raise ValueError('The revocation date may only be set once.')
if time <= _UNIX_EPOCH:
raise ValueError('The revocation date must be after the unix'
' epoch (1970 January 1).')
return RevokedCertificateBuilder(
self._serial_number, time, self._extensions
)
def add_extension(self, extension, critical):
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
# TODO: This is quadratic in the number of extensions
for e in self._extensions:
if e.oid == extension.oid:
raise ValueError('This extension has already been set.')
return RevokedCertificateBuilder(
self._serial_number, self._revocation_date,
self._extensions + [extension]
)
def build(self, backend):
if self._serial_number is None:
raise ValueError("A revoked certificate must have a serial number")
if self._revocation_date is None:
raise ValueError(
"A revoked certificate must have a revocation date"
)
return backend.create_x509_revoked_certificate(self)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,271 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import ipaddress
from email.utils import parseaddr
import idna
import six
from six.moves import urllib_parse
from cryptography import utils
from cryptography.x509.name import Name
from cryptography.x509.oid import ObjectIdentifier
_GENERAL_NAMES = {
0: "otherName",
1: "rfc822Name",
2: "dNSName",
3: "x400Address",
4: "directoryName",
5: "ediPartyName",
6: "uniformResourceIdentifier",
7: "iPAddress",
8: "registeredID",
}
class UnsupportedGeneralNameType(Exception):
def __init__(self, msg, type):
super(UnsupportedGeneralNameType, self).__init__(msg)
self.type = type
@six.add_metaclass(abc.ABCMeta)
class GeneralName(object):
@abc.abstractproperty
def value(self):
"""
Return the value of the object
"""
@utils.register_interface(GeneralName)
class RFC822Name(object):
def __init__(self, value):
if not isinstance(value, six.text_type):
raise TypeError("value must be a unicode string")
name, address = parseaddr(value)
parts = address.split(u"@")
if name or not address:
# parseaddr has found a name (e.g. Name <email>) or the entire
# value is an empty string.
raise ValueError("Invalid rfc822name value")
elif len(parts) == 1:
# Single label email name. This is valid for local delivery.
# No IDNA encoding needed since there is no domain component.
encoded = address.encode("ascii")
else:
# A normal email of the form user@domain.com. Let's attempt to
# encode the domain component and reconstruct the address.
encoded = parts[0].encode("ascii") + b"@" + idna.encode(parts[1])
self._value = value
self._encoded = encoded
value = utils.read_only_property("_value")
def __repr__(self):
return "<RFC822Name(value={0})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, RFC822Name):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
@utils.register_interface(GeneralName)
class DNSName(object):
def __init__(self, value):
if not isinstance(value, six.text_type):
raise TypeError("value must be a unicode string")
self._value = value
value = utils.read_only_property("_value")
def __repr__(self):
return "<DNSName(value={0})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, DNSName):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
@utils.register_interface(GeneralName)
class UniformResourceIdentifier(object):
def __init__(self, value):
if not isinstance(value, six.text_type):
raise TypeError("value must be a unicode string")
parsed = urllib_parse.urlparse(value)
if not parsed.hostname:
netloc = ""
elif parsed.port:
netloc = (
idna.encode(parsed.hostname) +
":{0}".format(parsed.port).encode("ascii")
).decode("ascii")
else:
netloc = idna.encode(parsed.hostname).decode("ascii")
# Note that building a URL in this fashion means it should be
# semantically indistinguishable from the original but is not
# guaranteed to be exactly the same.
uri = urllib_parse.urlunparse((
parsed.scheme,
netloc,
parsed.path,
parsed.params,
parsed.query,
parsed.fragment
)).encode("ascii")
self._value = value
self._encoded = uri
value = utils.read_only_property("_value")
def __repr__(self):
return "<UniformResourceIdentifier(value={0})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, UniformResourceIdentifier):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
@utils.register_interface(GeneralName)
class DirectoryName(object):
def __init__(self, value):
if not isinstance(value, Name):
raise TypeError("value must be a Name")
self._value = value
value = utils.read_only_property("_value")
def __repr__(self):
return "<DirectoryName(value={0})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, DirectoryName):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
@utils.register_interface(GeneralName)
class RegisteredID(object):
def __init__(self, value):
if not isinstance(value, ObjectIdentifier):
raise TypeError("value must be an ObjectIdentifier")
self._value = value
value = utils.read_only_property("_value")
def __repr__(self):
return "<RegisteredID(value={0})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, RegisteredID):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
@utils.register_interface(GeneralName)
class IPAddress(object):
def __init__(self, value):
if not isinstance(
value,
(
ipaddress.IPv4Address,
ipaddress.IPv6Address,
ipaddress.IPv4Network,
ipaddress.IPv6Network
)
):
raise TypeError(
"value must be an instance of ipaddress.IPv4Address, "
"ipaddress.IPv6Address, ipaddress.IPv4Network, or "
"ipaddress.IPv6Network"
)
self._value = value
value = utils.read_only_property("_value")
def __repr__(self):
return "<IPAddress(value={0})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, IPAddress):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
@utils.register_interface(GeneralName)
class OtherName(object):
def __init__(self, type_id, value):
if not isinstance(type_id, ObjectIdentifier):
raise TypeError("type_id must be an ObjectIdentifier")
if not isinstance(value, bytes):
raise TypeError("value must be a binary string")
self._type_id = type_id
self._value = value
type_id = utils.read_only_property("_type_id")
value = utils.read_only_property("_value")
def __repr__(self):
return "<OtherName(type_id={0}, value={1!r})>".format(
self.type_id, self.value)
def __eq__(self, other):
if not isinstance(other, OtherName):
return NotImplemented
return self.type_id == other.type_id and self.value == other.value
def __ne__(self, other):
return not self == other

View file

@ -0,0 +1,83 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import six
from cryptography import utils
from cryptography.x509.oid import NameOID, ObjectIdentifier
class NameAttribute(object):
def __init__(self, oid, value):
if not isinstance(oid, ObjectIdentifier):
raise TypeError(
"oid argument must be an ObjectIdentifier instance."
)
if not isinstance(value, six.text_type):
raise TypeError(
"value argument must be a text type."
)
if oid == NameOID.COUNTRY_NAME and len(value.encode("utf8")) != 2:
raise ValueError(
"Country name must be a 2 character country code"
)
self._oid = oid
self._value = value
oid = utils.read_only_property("_oid")
value = utils.read_only_property("_value")
def __eq__(self, other):
if not isinstance(other, NameAttribute):
return NotImplemented
return (
self.oid == other.oid and
self.value == other.value
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.oid, self.value))
def __repr__(self):
return "<NameAttribute(oid={0.oid}, value={0.value!r})>".format(self)
class Name(object):
def __init__(self, attributes):
self._attributes = attributes
def get_attributes_for_oid(self, oid):
return [i for i in self if i.oid == oid]
def __eq__(self, other):
if not isinstance(other, Name):
return NotImplemented
return self._attributes == other._attributes
def __ne__(self, other):
return not self == other
def __hash__(self):
# TODO: this is relatively expensive, if this looks like a bottleneck
# for you, consider optimizing!
return hash(tuple(self._attributes))
def __iter__(self):
return iter(self._attributes)
def __len__(self):
return len(self._attributes)
def __repr__(self):
return "<Name({0!r})>".format(self._attributes)

View file

@ -0,0 +1,243 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.hazmat.primitives import hashes
class ObjectIdentifier(object):
def __init__(self, dotted_string):
self._dotted_string = dotted_string
nodes = self._dotted_string.split(".")
intnodes = []
# There must be at least 2 nodes, the first node must be 0..2, and
# if less than 2, the second node cannot have a value outside the
# range 0..39. All nodes must be integers.
for node in nodes:
try:
intnodes.append(int(node, 0))
except ValueError:
raise ValueError(
"Malformed OID: %s (non-integer nodes)" % (
self._dotted_string))
if len(nodes) < 2:
raise ValueError(
"Malformed OID: %s (insufficient number of nodes)" % (
self._dotted_string))
if intnodes[0] > 2:
raise ValueError(
"Malformed OID: %s (first node outside valid range)" % (
self._dotted_string))
if intnodes[0] < 2 and intnodes[1] >= 40:
raise ValueError(
"Malformed OID: %s (second node outside valid range)" % (
self._dotted_string))
def __eq__(self, other):
if not isinstance(other, ObjectIdentifier):
return NotImplemented
return self.dotted_string == other.dotted_string
def __ne__(self, other):
return not self == other
def __repr__(self):
return "<ObjectIdentifier(oid={0}, name={1})>".format(
self.dotted_string,
self._name
)
def __hash__(self):
return hash(self.dotted_string)
@property
def _name(self):
return _OID_NAMES.get(self, "Unknown OID")
dotted_string = utils.read_only_property("_dotted_string")
class ExtensionOID(object):
SUBJECT_DIRECTORY_ATTRIBUTES = ObjectIdentifier("2.5.29.9")
SUBJECT_KEY_IDENTIFIER = ObjectIdentifier("2.5.29.14")
KEY_USAGE = ObjectIdentifier("2.5.29.15")
SUBJECT_ALTERNATIVE_NAME = ObjectIdentifier("2.5.29.17")
ISSUER_ALTERNATIVE_NAME = ObjectIdentifier("2.5.29.18")
BASIC_CONSTRAINTS = ObjectIdentifier("2.5.29.19")
NAME_CONSTRAINTS = ObjectIdentifier("2.5.29.30")
CRL_DISTRIBUTION_POINTS = ObjectIdentifier("2.5.29.31")
CERTIFICATE_POLICIES = ObjectIdentifier("2.5.29.32")
POLICY_MAPPINGS = ObjectIdentifier("2.5.29.33")
AUTHORITY_KEY_IDENTIFIER = ObjectIdentifier("2.5.29.35")
POLICY_CONSTRAINTS = ObjectIdentifier("2.5.29.36")
EXTENDED_KEY_USAGE = ObjectIdentifier("2.5.29.37")
FRESHEST_CRL = ObjectIdentifier("2.5.29.46")
INHIBIT_ANY_POLICY = ObjectIdentifier("2.5.29.54")
AUTHORITY_INFORMATION_ACCESS = ObjectIdentifier("1.3.6.1.5.5.7.1.1")
SUBJECT_INFORMATION_ACCESS = ObjectIdentifier("1.3.6.1.5.5.7.1.11")
OCSP_NO_CHECK = ObjectIdentifier("1.3.6.1.5.5.7.48.1.5")
CRL_NUMBER = ObjectIdentifier("2.5.29.20")
class CRLEntryExtensionOID(object):
CERTIFICATE_ISSUER = ObjectIdentifier("2.5.29.29")
CRL_REASON = ObjectIdentifier("2.5.29.21")
INVALIDITY_DATE = ObjectIdentifier("2.5.29.24")
class NameOID(object):
COMMON_NAME = ObjectIdentifier("2.5.4.3")
COUNTRY_NAME = ObjectIdentifier("2.5.4.6")
LOCALITY_NAME = ObjectIdentifier("2.5.4.7")
STATE_OR_PROVINCE_NAME = ObjectIdentifier("2.5.4.8")
ORGANIZATION_NAME = ObjectIdentifier("2.5.4.10")
ORGANIZATIONAL_UNIT_NAME = ObjectIdentifier("2.5.4.11")
SERIAL_NUMBER = ObjectIdentifier("2.5.4.5")
SURNAME = ObjectIdentifier("2.5.4.4")
GIVEN_NAME = ObjectIdentifier("2.5.4.42")
TITLE = ObjectIdentifier("2.5.4.12")
GENERATION_QUALIFIER = ObjectIdentifier("2.5.4.44")
DN_QUALIFIER = ObjectIdentifier("2.5.4.46")
PSEUDONYM = ObjectIdentifier("2.5.4.65")
DOMAIN_COMPONENT = ObjectIdentifier("0.9.2342.19200300.100.1.25")
EMAIL_ADDRESS = ObjectIdentifier("1.2.840.113549.1.9.1")
JURISDICTION_COUNTRY_NAME = ObjectIdentifier("1.3.6.1.4.1.311.60.2.1.3")
JURISDICTION_LOCALITY_NAME = ObjectIdentifier("1.3.6.1.4.1.311.60.2.1.1")
JURISDICTION_STATE_OR_PROVINCE_NAME = ObjectIdentifier(
"1.3.6.1.4.1.311.60.2.1.2"
)
BUSINESS_CATEGORY = ObjectIdentifier("2.5.4.15")
class SignatureAlgorithmOID(object):
RSA_WITH_MD5 = ObjectIdentifier("1.2.840.113549.1.1.4")
RSA_WITH_SHA1 = ObjectIdentifier("1.2.840.113549.1.1.5")
RSA_WITH_SHA224 = ObjectIdentifier("1.2.840.113549.1.1.14")
RSA_WITH_SHA256 = ObjectIdentifier("1.2.840.113549.1.1.11")
RSA_WITH_SHA384 = ObjectIdentifier("1.2.840.113549.1.1.12")
RSA_WITH_SHA512 = ObjectIdentifier("1.2.840.113549.1.1.13")
ECDSA_WITH_SHA1 = ObjectIdentifier("1.2.840.10045.4.1")
ECDSA_WITH_SHA224 = ObjectIdentifier("1.2.840.10045.4.3.1")
ECDSA_WITH_SHA256 = ObjectIdentifier("1.2.840.10045.4.3.2")
ECDSA_WITH_SHA384 = ObjectIdentifier("1.2.840.10045.4.3.3")
ECDSA_WITH_SHA512 = ObjectIdentifier("1.2.840.10045.4.3.4")
DSA_WITH_SHA1 = ObjectIdentifier("1.2.840.10040.4.3")
DSA_WITH_SHA224 = ObjectIdentifier("2.16.840.1.101.3.4.3.1")
DSA_WITH_SHA256 = ObjectIdentifier("2.16.840.1.101.3.4.3.2")
_SIG_OIDS_TO_HASH = {
SignatureAlgorithmOID.RSA_WITH_MD5.dotted_string: hashes.MD5(),
SignatureAlgorithmOID.RSA_WITH_SHA1.dotted_string: hashes.SHA1(),
SignatureAlgorithmOID.RSA_WITH_SHA224.dotted_string: hashes.SHA224(),
SignatureAlgorithmOID.RSA_WITH_SHA256.dotted_string: hashes.SHA256(),
SignatureAlgorithmOID.RSA_WITH_SHA384.dotted_string: hashes.SHA384(),
SignatureAlgorithmOID.RSA_WITH_SHA512.dotted_string: hashes.SHA512(),
SignatureAlgorithmOID.ECDSA_WITH_SHA1.dotted_string: hashes.SHA1(),
SignatureAlgorithmOID.ECDSA_WITH_SHA224.dotted_string: hashes.SHA224(),
SignatureAlgorithmOID.ECDSA_WITH_SHA256.dotted_string: hashes.SHA256(),
SignatureAlgorithmOID.ECDSA_WITH_SHA384.dotted_string: hashes.SHA384(),
SignatureAlgorithmOID.ECDSA_WITH_SHA512.dotted_string: hashes.SHA512(),
SignatureAlgorithmOID.DSA_WITH_SHA1.dotted_string: hashes.SHA1(),
SignatureAlgorithmOID.DSA_WITH_SHA224.dotted_string: hashes.SHA224(),
SignatureAlgorithmOID.DSA_WITH_SHA256.dotted_string: hashes.SHA256()
}
class ExtendedKeyUsageOID(object):
SERVER_AUTH = ObjectIdentifier("1.3.6.1.5.5.7.3.1")
CLIENT_AUTH = ObjectIdentifier("1.3.6.1.5.5.7.3.2")
CODE_SIGNING = ObjectIdentifier("1.3.6.1.5.5.7.3.3")
EMAIL_PROTECTION = ObjectIdentifier("1.3.6.1.5.5.7.3.4")
TIME_STAMPING = ObjectIdentifier("1.3.6.1.5.5.7.3.8")
OCSP_SIGNING = ObjectIdentifier("1.3.6.1.5.5.7.3.9")
class AuthorityInformationAccessOID(object):
CA_ISSUERS = ObjectIdentifier("1.3.6.1.5.5.7.48.2")
OCSP = ObjectIdentifier("1.3.6.1.5.5.7.48.1")
class CertificatePoliciesOID(object):
CPS_QUALIFIER = ObjectIdentifier("1.3.6.1.5.5.7.2.1")
CPS_USER_NOTICE = ObjectIdentifier("1.3.6.1.5.5.7.2.2")
ANY_POLICY = ObjectIdentifier("2.5.29.32.0")
_OID_NAMES = {
NameOID.COMMON_NAME: "commonName",
NameOID.COUNTRY_NAME: "countryName",
NameOID.LOCALITY_NAME: "localityName",
NameOID.STATE_OR_PROVINCE_NAME: "stateOrProvinceName",
NameOID.ORGANIZATION_NAME: "organizationName",
NameOID.ORGANIZATIONAL_UNIT_NAME: "organizationalUnitName",
NameOID.SERIAL_NUMBER: "serialNumber",
NameOID.SURNAME: "surname",
NameOID.GIVEN_NAME: "givenName",
NameOID.TITLE: "title",
NameOID.GENERATION_QUALIFIER: "generationQualifier",
NameOID.DN_QUALIFIER: "dnQualifier",
NameOID.PSEUDONYM: "pseudonym",
NameOID.DOMAIN_COMPONENT: "domainComponent",
NameOID.EMAIL_ADDRESS: "emailAddress",
NameOID.JURISDICTION_COUNTRY_NAME: "jurisdictionCountryName",
NameOID.JURISDICTION_LOCALITY_NAME: "jurisdictionLocalityName",
NameOID.JURISDICTION_STATE_OR_PROVINCE_NAME: (
"jurisdictionStateOrProvinceName"
),
NameOID.BUSINESS_CATEGORY: "businessCategory",
SignatureAlgorithmOID.RSA_WITH_MD5: "md5WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA1: "sha1WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA224: "sha224WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA256: "sha256WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA384: "sha384WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA512: "sha512WithRSAEncryption",
SignatureAlgorithmOID.ECDSA_WITH_SHA1: "ecdsa-with-SHA1",
SignatureAlgorithmOID.ECDSA_WITH_SHA224: "ecdsa-with-SHA224",
SignatureAlgorithmOID.ECDSA_WITH_SHA256: "ecdsa-with-SHA256",
SignatureAlgorithmOID.ECDSA_WITH_SHA384: "ecdsa-with-SHA384",
SignatureAlgorithmOID.ECDSA_WITH_SHA512: "ecdsa-with-SHA512",
SignatureAlgorithmOID.DSA_WITH_SHA1: "dsa-with-sha1",
SignatureAlgorithmOID.DSA_WITH_SHA224: "dsa-with-sha224",
SignatureAlgorithmOID.DSA_WITH_SHA256: "dsa-with-sha256",
ExtendedKeyUsageOID.SERVER_AUTH: "serverAuth",
ExtendedKeyUsageOID.CLIENT_AUTH: "clientAuth",
ExtendedKeyUsageOID.CODE_SIGNING: "codeSigning",
ExtendedKeyUsageOID.EMAIL_PROTECTION: "emailProtection",
ExtendedKeyUsageOID.TIME_STAMPING: "timeStamping",
ExtendedKeyUsageOID.OCSP_SIGNING: "OCSPSigning",
ExtensionOID.SUBJECT_DIRECTORY_ATTRIBUTES: "subjectDirectoryAttributes",
ExtensionOID.SUBJECT_KEY_IDENTIFIER: "subjectKeyIdentifier",
ExtensionOID.KEY_USAGE: "keyUsage",
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: "subjectAltName",
ExtensionOID.ISSUER_ALTERNATIVE_NAME: "issuerAltName",
ExtensionOID.BASIC_CONSTRAINTS: "basicConstraints",
CRLEntryExtensionOID.CRL_REASON: "cRLReason",
CRLEntryExtensionOID.INVALIDITY_DATE: "invalidityDate",
CRLEntryExtensionOID.CERTIFICATE_ISSUER: "certificateIssuer",
ExtensionOID.NAME_CONSTRAINTS: "nameConstraints",
ExtensionOID.CRL_DISTRIBUTION_POINTS: "cRLDistributionPoints",
ExtensionOID.CERTIFICATE_POLICIES: "certificatePolicies",
ExtensionOID.POLICY_MAPPINGS: "policyMappings",
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: "authorityKeyIdentifier",
ExtensionOID.POLICY_CONSTRAINTS: "policyConstraints",
ExtensionOID.EXTENDED_KEY_USAGE: "extendedKeyUsage",
ExtensionOID.FRESHEST_CRL: "freshestCRL",
ExtensionOID.INHIBIT_ANY_POLICY: "inhibitAnyPolicy",
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: "authorityInfoAccess",
ExtensionOID.SUBJECT_INFORMATION_ACCESS: "subjectInfoAccess",
ExtensionOID.OCSP_NO_CHECK: "OCSPNoCheck",
ExtensionOID.CRL_NUMBER: "cRLNumber",
AuthorityInformationAccessOID.OCSP: "OCSP",
AuthorityInformationAccessOID.CA_ISSUERS: "caIssuers",
CertificatePoliciesOID.CPS_QUALIFIER: "id-qt-cps",
CertificatePoliciesOID.CPS_USER_NOTICE: "id-qt-unotice",
}