# sql/functions.py # Copyright (C) 2005-2014 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """SQL function API, factories, and built-in functions. """ from . import sqltypes, schema from .base import Executable from .elements import ClauseList, Cast, Extract, _literal_as_binds, \ literal_column, _type_from_args, ColumnElement, _clone,\ Over, BindParameter from .selectable import FromClause, Select from . import operators from .visitors import VisitableType from .. import util from . import annotation _registry = util.defaultdict(dict) def register_function(identifier, fn, package="_default"): """Associate a callable with a particular func. name. This is normally called by _GenericMeta, but is also available by itself so that a non-Function construct can be associated with the :data:`.func` accessor (i.e. CAST, EXTRACT). """ reg = _registry[package] reg[identifier] = fn class FunctionElement(Executable, ColumnElement, FromClause): """Base for SQL function-oriented constructs. .. seealso:: :class:`.Function` - named SQL function. :data:`.func` - namespace which produces registered or ad-hoc :class:`.Function` instances. :class:`.GenericFunction` - allows creation of registered function types. """ packagenames = () def __init__(self, *clauses, **kwargs): """Construct a :class:`.FunctionElement`. """ args = [_literal_as_binds(c, self.name) for c in clauses] self.clause_expr = ClauseList( operator=operators.comma_op, group_contents=True, *args).\ self_group() def _execute_on_connection(self, connection, multiparams, params): return connection._execute_function(self, multiparams, params) @property def columns(self): """Fulfill the 'columns' contract of :class:`.ColumnElement`. Returns a single-element list consisting of this object. """ return [self] @util.memoized_property def clauses(self): """Return the underlying :class:`.ClauseList` which contains the arguments for this :class:`.FunctionElement`. """ return self.clause_expr.element def over(self, partition_by=None, order_by=None): """Produce an OVER clause against this function. Used against aggregate or so-called "window" functions, for database backends that support window functions. The expression:: func.row_number().over(order_by='x') is shorthand for:: from sqlalchemy import over over(func.row_number(), order_by='x') See :func:`~.expression.over` for a full description. .. versionadded:: 0.7 """ return Over(self, partition_by=partition_by, order_by=order_by) @property def _from_objects(self): return self.clauses._from_objects def get_children(self, **kwargs): return self.clause_expr, def _copy_internals(self, clone=_clone, **kw): self.clause_expr = clone(self.clause_expr, **kw) self._reset_exported() FunctionElement.clauses._reset(self) def select(self): """Produce a :func:`~.expression.select` construct against this :class:`.FunctionElement`. This is shorthand for:: s = select([function_element]) """ s = Select([self]) if self._execution_options: s = s.execution_options(**self._execution_options) return s def scalar(self): """Execute this :class:`.FunctionElement` against an embedded 'bind' and return a scalar value. This first calls :meth:`~.FunctionElement.select` to produce a SELECT construct. Note that :class:`.FunctionElement` can be passed to the :meth:`.Connectable.scalar` method of :class:`.Connection` or :class:`.Engine`. """ return self.select().execute().scalar() def execute(self): """Execute this :class:`.FunctionElement` against an embedded 'bind'. This first calls :meth:`~.FunctionElement.select` to produce a SELECT construct. Note that :class:`.FunctionElement` can be passed to the :meth:`.Connectable.execute` method of :class:`.Connection` or :class:`.Engine`. """ return self.select().execute() def _bind_param(self, operator, obj): return BindParameter(None, obj, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) class _FunctionGenerator(object): """Generate :class:`.Function` objects based on getattr calls.""" def __init__(self, **opts): self.__names = [] self.opts = opts def __getattr__(self, name): # passthru __ attributes; fixes pydoc if name.startswith('__'): try: return self.__dict__[name] except KeyError: raise AttributeError(name) elif name.endswith('_'): name = name[0:-1] f = _FunctionGenerator(**self.opts) f.__names = list(self.__names) + [name] return f def __call__(self, *c, **kwargs): o = self.opts.copy() o.update(kwargs) tokens = len(self.__names) if tokens == 2: package, fname = self.__names elif tokens == 1: package, fname = "_default", self.__names[0] else: package = None if package is not None: func = _registry[package].get(fname) if func is not None: return func(*c, **o) return Function(self.__names[-1], packagenames=self.__names[0:-1], *c, **o) func = _FunctionGenerator() """Generate SQL function expressions. :data:`.func` is a special object instance which generates SQL functions based on name-based attributes, e.g.:: >>> print func.count(1) count(:param_1) The element is a column-oriented SQL element like any other, and is used in that way:: >>> print select([func.count(table.c.id)]) SELECT count(sometable.id) FROM sometable Any name can be given to :data:`.func`. If the function name is unknown to SQLAlchemy, it will be rendered exactly as is. For common SQL functions which SQLAlchemy is aware of, the name may be interpreted as a *generic function* which will be compiled appropriately to the target database:: >>> print func.current_timestamp() CURRENT_TIMESTAMP To call functions which are present in dot-separated packages, specify them in the same manner:: >>> print func.stats.yield_curve(5, 10) stats.yield_curve(:yield_curve_1, :yield_curve_2) SQLAlchemy can be made aware of the return type of functions to enable type-specific lexical and result-based behavior. For example, to ensure that a string-based function returns a Unicode value and is similarly treated as a string in expressions, specify :class:`~sqlalchemy.types.Unicode` as the type: >>> print func.my_string(u'hi', type_=Unicode) + ' ' + \ ... func.my_string(u'there', type_=Unicode) my_string(:my_string_1) || :my_string_2 || my_string(:my_string_3) The object returned by a :data:`.func` call is usually an instance of :class:`.Function`. This object meets the "column" interface, including comparison and labeling functions. The object can also be passed the :meth:`~.Connectable.execute` method of a :class:`.Connection` or :class:`.Engine`, where it will be wrapped inside of a SELECT statement first:: print connection.execute(func.current_timestamp()).scalar() In a few exception cases, the :data:`.func` accessor will redirect a name to a built-in expression such as :func:`.cast` or :func:`.extract`, as these names have well-known meaning but are not exactly the same as "functions" from a SQLAlchemy perspective. .. versionadded:: 0.8 :data:`.func` can return non-function expression constructs for common quasi-functional names like :func:`.cast` and :func:`.extract`. Functions which are interpreted as "generic" functions know how to calculate their return type automatically. For a listing of known generic functions, see :ref:`generic_functions`. .. note:: The :data:`.func` construct has only limited support for calling standalone "stored procedures", especially those with special parameterization concerns. See the section :ref:`stored_procedures` for details on how to use the DBAPI-level ``callproc()`` method for fully traditional stored procedures. """ modifier = _FunctionGenerator(group=False) class Function(FunctionElement): """Describe a named SQL function. See the superclass :class:`.FunctionElement` for a description of public methods. .. seealso:: :data:`.func` - namespace which produces registered or ad-hoc :class:`.Function` instances. :class:`.GenericFunction` - allows creation of registered function types. """ __visit_name__ = 'function' def __init__(self, name, *clauses, **kw): """Construct a :class:`.Function`. The :data:`.func` construct is normally used to construct new :class:`.Function` instances. """ self.packagenames = kw.pop('packagenames', None) or [] self.name = name self._bind = kw.get('bind', None) self.type = sqltypes.to_instance(kw.get('type_', None)) FunctionElement.__init__(self, *clauses, **kw) def _bind_param(self, operator, obj): return BindParameter(self.name, obj, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) class _GenericMeta(VisitableType): def __init__(cls, clsname, bases, clsdict): if annotation.Annotated not in cls.__mro__: cls.name = name = clsdict.get('name', clsname) cls.identifier = identifier = clsdict.get('identifier', name) package = clsdict.pop('package', '_default') # legacy if '__return_type__' in clsdict: cls.type = clsdict['__return_type__'] register_function(identifier, cls, package) super(_GenericMeta, cls).__init__(clsname, bases, clsdict) class GenericFunction(util.with_metaclass(_GenericMeta, Function)): """Define a 'generic' function. A generic function is a pre-established :class:`.Function` class that is instantiated automatically when called by name from the :data:`.func` attribute. Note that calling any name from :data:`.func` has the effect that a new :class:`.Function` instance is created automatically, given that name. The primary use case for defining a :class:`.GenericFunction` class is so that a function of a particular name may be given a fixed return type. It can also include custom argument parsing schemes as well as additional methods. Subclasses of :class:`.GenericFunction` are automatically registered under the name of the class. For example, a user-defined function ``as_utc()`` would be available immediately:: from sqlalchemy.sql.functions import GenericFunction from sqlalchemy.types import DateTime class as_utc(GenericFunction): type = DateTime print select([func.as_utc()]) User-defined generic functions can be organized into packages by specifying the "package" attribute when defining :class:`.GenericFunction`. Third party libraries containing many functions may want to use this in order to avoid name conflicts with other systems. For example, if our ``as_utc()`` function were part of a package "time":: class as_utc(GenericFunction): type = DateTime package = "time" The above function would be available from :data:`.func` using the package name ``time``:: print select([func.time.as_utc()]) A final option is to allow the function to be accessed from one name in :data:`.func` but to render as a different name. The ``identifier`` attribute will override the name used to access the function as loaded from :data:`.func`, but will retain the usage of ``name`` as the rendered name:: class GeoBuffer(GenericFunction): type = Geometry package = "geo" name = "ST_Buffer" identifier = "buffer" The above function will render as follows:: >>> print func.geo.buffer() ST_Buffer() .. versionadded:: 0.8 :class:`.GenericFunction` now supports automatic registration of new functions as well as package and custom naming support. .. versionchanged:: 0.8 The attribute name ``type`` is used to specify the function's return type at the class level. Previously, the name ``__return_type__`` was used. This name is still recognized for backwards-compatibility. """ coerce_arguments = True def __init__(self, *args, **kwargs): parsed_args = kwargs.pop('_parsed_args', None) if parsed_args is None: parsed_args = [_literal_as_binds(c) for c in args] self.packagenames = [] self._bind = kwargs.get('bind', None) self.clause_expr = ClauseList( operator=operators.comma_op, group_contents=True, *parsed_args).self_group() self.type = sqltypes.to_instance( kwargs.pop("type_", None) or getattr(self, 'type', None)) register_function("cast", Cast) register_function("extract", Extract) class next_value(GenericFunction): """Represent the 'next value', given a :class:`.Sequence` as its single argument. Compiles into the appropriate function on each backend, or will raise NotImplementedError if used on a backend that does not provide support for sequences. """ type = sqltypes.Integer() name = "next_value" def __init__(self, seq, **kw): assert isinstance(seq, schema.Sequence), \ "next_value() accepts a Sequence object as input." self._bind = kw.get('bind', None) self.sequence = seq @property def _from_objects(self): return [] class AnsiFunction(GenericFunction): def __init__(self, **kwargs): GenericFunction.__init__(self, **kwargs) class ReturnTypeFromArgs(GenericFunction): """Define a function whose return type is the same as its arguments.""" def __init__(self, *args, **kwargs): args = [_literal_as_binds(c) for c in args] kwargs.setdefault('type_', _type_from_args(args)) kwargs['_parsed_args'] = args GenericFunction.__init__(self, *args, **kwargs) class coalesce(ReturnTypeFromArgs): pass class max(ReturnTypeFromArgs): pass class min(ReturnTypeFromArgs): pass class sum(ReturnTypeFromArgs): pass class now(GenericFunction): type = sqltypes.DateTime class concat(GenericFunction): type = sqltypes.String class char_length(GenericFunction): type = sqltypes.Integer def __init__(self, arg, **kwargs): GenericFunction.__init__(self, arg, **kwargs) class random(GenericFunction): pass class count(GenericFunction): """The ANSI COUNT aggregate function. With no arguments, emits COUNT \*. """ type = sqltypes.Integer def __init__(self, expression=None, **kwargs): if expression is None: expression = literal_column('*') GenericFunction.__init__(self, expression, **kwargs) class current_date(AnsiFunction): type = sqltypes.Date class current_time(AnsiFunction): type = sqltypes.Time class current_timestamp(AnsiFunction): type = sqltypes.DateTime class current_user(AnsiFunction): type = sqltypes.String class localtime(AnsiFunction): type = sqltypes.DateTime class localtimestamp(AnsiFunction): type = sqltypes.DateTime class session_user(AnsiFunction): type = sqltypes.String class sysdate(AnsiFunction): type = sqltypes.DateTime class user(AnsiFunction): type = sqltypes.String