split platform

This commit is contained in:
j 2016-02-06 15:06:57 +05:30
commit 8c9b09577d
2261 changed files with 676163 additions and 0 deletions

View file

@ -0,0 +1,44 @@
# -*- coding: utf-8 -*-
#
# SelfTest/PublicKey/__init__.py: Self-test for public key crypto
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""Self-test for public-key crypto"""
__revision__ = "$Id$"
import os
def get_tests(config={}):
tests = []
from Crypto.SelfTest.PublicKey import test_DSA; tests += test_DSA.get_tests(config=config)
from Crypto.SelfTest.PublicKey import test_RSA; tests += test_RSA.get_tests(config=config)
from Crypto.SelfTest.PublicKey import test_importKey; tests += test_importKey.get_tests(config=config)
from Crypto.SelfTest.PublicKey import test_ElGamal; tests += test_ElGamal.get_tests(config=config)
return tests
if __name__ == '__main__':
import unittest
suite = lambda: unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')
# vim:set ts=4 sw=4 sts=4 expandtab:

View file

@ -0,0 +1,244 @@
# -*- coding: utf-8 -*-
#
# SelfTest/PublicKey/test_DSA.py: Self-test for the DSA primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""Self-test suite for Crypto.PublicKey.DSA"""
__revision__ = "$Id$"
import sys
import os
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
from Crypto.Util.py21compat import *
from Crypto.Util.py3compat import *
import unittest
from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex
def _sws(s):
"""Remove whitespace from a text or byte string"""
if isinstance(s,str):
return "".join(s.split())
else:
return b("").join(s.split())
class DSATest(unittest.TestCase):
# Test vector from "Appendix 5. Example of the DSA" of
# "Digital Signature Standard (DSS)",
# U.S. Department of Commerce/National Institute of Standards and Technology
# FIPS 186-2 (+Change Notice), 2000 January 27.
# http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
y = _sws("""19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85
9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74
858fba33 f44c0669 9630a76b 030ee333""")
g = _sws("""626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb
3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c
c42e9f6f 464b088c c572af53 e6d78802""")
p = _sws("""8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7
cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac
49693dfb f83724c2 ec0736ee 31c80291""")
q = _sws("""c773218c 737ec8ee 993b4f2d ed30f48e dace915f""")
x = _sws("""2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614""")
k = _sws("""358dad57 1462710f 50e254cf 1a376b2b deaadfbf""")
k_inverse = _sws("""0d516729 8202e49b 4116ac10 4fc3f415 ae52f917""")
m = b2a_hex(b("abc"))
m_hash = _sws("""a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d""")
r = _sws("""8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0""")
s = _sws("""41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8""")
def setUp(self):
global DSA, Random, bytes_to_long, size
from Crypto.PublicKey import DSA
from Crypto import Random
from Crypto.Util.number import bytes_to_long, inverse, size
self.dsa = DSA
def test_generate_1arg(self):
"""DSA (default implementation) generated key (1 argument)"""
dsaObj = self.dsa.generate(1024)
self._check_private_key(dsaObj)
pub = dsaObj.publickey()
self._check_public_key(pub)
def test_generate_2arg(self):
"""DSA (default implementation) generated key (2 arguments)"""
dsaObj = self.dsa.generate(1024, Random.new().read)
self._check_private_key(dsaObj)
pub = dsaObj.publickey()
self._check_public_key(pub)
def test_construct_4tuple(self):
"""DSA (default implementation) constructed key (4-tuple)"""
(y, g, p, q) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q)]
dsaObj = self.dsa.construct((y, g, p, q))
self._test_verification(dsaObj)
def test_construct_5tuple(self):
"""DSA (default implementation) constructed key (5-tuple)"""
(y, g, p, q, x) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q, self.x)]
dsaObj = self.dsa.construct((y, g, p, q, x))
self._test_signing(dsaObj)
self._test_verification(dsaObj)
def _check_private_key(self, dsaObj):
# Check capabilities
self.assertEqual(1, dsaObj.has_private())
self.assertEqual(1, dsaObj.can_sign())
self.assertEqual(0, dsaObj.can_encrypt())
self.assertEqual(0, dsaObj.can_blind())
# Check dsaObj.[ygpqx] -> dsaObj.key.[ygpqx] mapping
self.assertEqual(dsaObj.y, dsaObj.key.y)
self.assertEqual(dsaObj.g, dsaObj.key.g)
self.assertEqual(dsaObj.p, dsaObj.key.p)
self.assertEqual(dsaObj.q, dsaObj.key.q)
self.assertEqual(dsaObj.x, dsaObj.key.x)
# Sanity check key data
self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q
self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits
self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1
self.assertEqual(dsaObj.y, pow(dsaObj.g, dsaObj.x, dsaObj.p)) # y == g**x mod p
self.assertEqual(1, 0 < dsaObj.x < dsaObj.q) # 0 < x < q
def _check_public_key(self, dsaObj):
k = a2b_hex(self.k)
m_hash = a2b_hex(self.m_hash)
# Check capabilities
self.assertEqual(0, dsaObj.has_private())
self.assertEqual(1, dsaObj.can_sign())
self.assertEqual(0, dsaObj.can_encrypt())
self.assertEqual(0, dsaObj.can_blind())
# Check dsaObj.[ygpq] -> dsaObj.key.[ygpq] mapping
self.assertEqual(dsaObj.y, dsaObj.key.y)
self.assertEqual(dsaObj.g, dsaObj.key.g)
self.assertEqual(dsaObj.p, dsaObj.key.p)
self.assertEqual(dsaObj.q, dsaObj.key.q)
# Check that private parameters are all missing
self.assertEqual(0, hasattr(dsaObj, 'x'))
self.assertEqual(0, hasattr(dsaObj.key, 'x'))
# Sanity check key data
self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q
self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits
self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1
# Public-only key objects should raise an error when .sign() is called
self.assertRaises(TypeError, dsaObj.sign, m_hash, k)
# Check __eq__ and __ne__
self.assertEqual(dsaObj.publickey() == dsaObj.publickey(),True) # assert_
self.assertEqual(dsaObj.publickey() != dsaObj.publickey(),False) # failIf
def _test_signing(self, dsaObj):
k = a2b_hex(self.k)
m_hash = a2b_hex(self.m_hash)
r = bytes_to_long(a2b_hex(self.r))
s = bytes_to_long(a2b_hex(self.s))
(r_out, s_out) = dsaObj.sign(m_hash, k)
self.assertEqual((r, s), (r_out, s_out))
def _test_verification(self, dsaObj):
m_hash = a2b_hex(self.m_hash)
r = bytes_to_long(a2b_hex(self.r))
s = bytes_to_long(a2b_hex(self.s))
self.assertEqual(1, dsaObj.verify(m_hash, (r, s)))
self.assertEqual(0, dsaObj.verify(m_hash + b("\0"), (r, s)))
class DSAFastMathTest(DSATest):
def setUp(self):
DSATest.setUp(self)
self.dsa = DSA.DSAImplementation(use_fast_math=True)
def test_generate_1arg(self):
"""DSA (_fastmath implementation) generated key (1 argument)"""
DSATest.test_generate_1arg(self)
def test_generate_2arg(self):
"""DSA (_fastmath implementation) generated key (2 arguments)"""
DSATest.test_generate_2arg(self)
def test_construct_4tuple(self):
"""DSA (_fastmath implementation) constructed key (4-tuple)"""
DSATest.test_construct_4tuple(self)
def test_construct_5tuple(self):
"""DSA (_fastmath implementation) constructed key (5-tuple)"""
DSATest.test_construct_5tuple(self)
class DSASlowMathTest(DSATest):
def setUp(self):
DSATest.setUp(self)
self.dsa = DSA.DSAImplementation(use_fast_math=False)
def test_generate_1arg(self):
"""DSA (_slowmath implementation) generated key (1 argument)"""
DSATest.test_generate_1arg(self)
def test_generate_2arg(self):
"""DSA (_slowmath implementation) generated key (2 arguments)"""
DSATest.test_generate_2arg(self)
def test_construct_4tuple(self):
"""DSA (_slowmath implementation) constructed key (4-tuple)"""
DSATest.test_construct_4tuple(self)
def test_construct_5tuple(self):
"""DSA (_slowmath implementation) constructed key (5-tuple)"""
DSATest.test_construct_5tuple(self)
def get_tests(config={}):
tests = []
tests += list_test_cases(DSATest)
try:
from Crypto.PublicKey import _fastmath
tests += list_test_cases(DSAFastMathTest)
except ImportError:
from distutils.sysconfig import get_config_var
import inspect
_fm_path = os.path.normpath(os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
+"/../../PublicKey/_fastmath"+get_config_var("SO"))
if os.path.exists(_fm_path):
raise ImportError("While the _fastmath module exists, importing "+
"it failed. This may point to the gmp or mpir shared library "+
"not being in the path. _fastmath was found at "+_fm_path)
tests += list_test_cases(DSASlowMathTest)
return tests
if __name__ == '__main__':
suite = lambda: unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')
# vim:set ts=4 sw=4 sts=4 expandtab:

View file

@ -0,0 +1,210 @@
# -*- coding: utf-8 -*-
#
# SelfTest/PublicKey/test_ElGamal.py: Self-test for the ElGamal primitive
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""Self-test suite for Crypto.PublicKey.ElGamal"""
__revision__ = "$Id$"
import unittest
from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex
from Crypto import Random
from Crypto.PublicKey import ElGamal
from Crypto.Util.number import *
from Crypto.Util.py3compat import *
class ElGamalTest(unittest.TestCase):
#
# Test vectors
#
# There seem to be no real ElGamal test vectors available in the
# public domain. The following test vectors have been generated
# with libgcrypt 1.5.0.
#
# Encryption
tve=[
{
# 256 bits
'p' :'BA4CAEAAED8CBE952AFD2126C63EB3B345D65C2A0A73D2A3AD4138B6D09BD933',
'g' :'05',
'y' :'60D063600ECED7C7C55146020E7A31C4476E9793BEAED420FEC9E77604CAE4EF',
'x' :'1D391BA2EE3C37FE1BA175A69B2C73A11238AD77675932',
'k' :'F5893C5BAB4131264066F57AB3D8AD89E391A0B68A68A1',
'pt' :'48656C6C6F207468657265',
'ct1':'32BFD5F487966CEA9E9356715788C491EC515E4ED48B58F0F00971E93AAA5EC7',
'ct2':'7BE8FBFF317C93E82FCEF9BD515284BA506603FEA25D01C0CB874A31F315EE68'
},
{
# 512 bits
'p' :'F1B18AE9F7B4E08FDA9A04832F4E919D89462FD31BF12F92791A93519F75076D6CE3942689CDFF2F344CAFF0F82D01864F69F3AECF566C774CBACF728B81A227',
'g' :'07',
'y' :'688628C676E4F05D630E1BE39D0066178CA7AA83836B645DE5ADD359B4825A12B02EF4252E4E6FA9BEC1DB0BE90F6D7C8629CABB6E531F472B2664868156E20C',
'x' :'14E60B1BDFD33436C0DA8A22FDC14A2CCDBBED0627CE68',
'k' :'38DBF14E1F319BDA9BAB33EEEADCAF6B2EA5250577ACE7',
'pt' :'48656C6C6F207468657265',
'ct1':'290F8530C2CC312EC46178724F196F308AD4C523CEABB001FACB0506BFED676083FE0F27AC688B5C749AB3CB8A80CD6F7094DBA421FB19442F5A413E06A9772B',
'ct2':'1D69AAAD1DC50493FB1B8E8721D621D683F3BF1321BE21BC4A43E11B40C9D4D9C80DE3AAC2AB60D31782B16B61112E68220889D53C4C3136EE6F6CE61F8A23A0'
}
]
# Signature
tvs=[
{
# 256 bits
'p' :'D2F3C41EA66530838A704A48FFAC9334F4701ECE3A97CEE4C69DD01AE7129DD7',
'g' :'05',
'y' :'C3F9417DC0DAFEA6A05C1D2333B7A95E63B3F4F28CC962254B3256984D1012E7',
'x' :'165E4A39BE44D5A2D8B1332D416BC559616F536BC735BB',
'k' :'C7F0C794A7EAD726E25A47FF8928013680E73C51DD3D7D99BFDA8F492585928F',
'h' :'48656C6C6F207468657265',
'sig1':'35CA98133779E2073EF31165AFCDEB764DD54E96ADE851715495F9C635E1E7C2',
'sig2':'0135B88B1151279FE5D8078D4FC685EE81177EE9802AB123A73925FC1CB059A7',
},
{
# 512 bits
'p' :'E24CF3A4B8A6AF749DCA6D714282FE4AABEEE44A53BB6ED15FBE32B5D3C3EF9CC4124A2ECA331F3C1C1B667ACA3766825217E7B5F9856648D95F05330C6A19CF',
'g' :'0B',
'y' :'2AD3A1049CA5D4ED207B2431C79A8719BB4073D4A94E450EA6CEE8A760EB07ADB67C0D52C275EE85D7B52789061EE45F2F37D9B2AE522A51C28329766BFE68AC',
'x' :'16CBB4F46D9ECCF24FF9F7E63CAA3BD8936341555062AB',
'k' :'8A3D89A4E429FD2476D7D717251FB79BF900FFE77444E6BB8299DC3F84D0DD57ABAB50732AE158EA52F5B9E7D8813E81FD9F79470AE22F8F1CF9AEC820A78C69',
'h' :'48656C6C6F207468657265',
'sig1':'BE001AABAFFF976EC9016198FBFEA14CBEF96B000CCC0063D3324016F9E91FE80D8F9325812ED24DDB2B4D4CF4430B169880B3CE88313B53255BD4EC0378586F',
'sig2':'5E266F3F837BA204E3BBB6DBECC0611429D96F8C7CE8F4EFDF9D4CB681C2A954468A357BF4242CEC7418B51DFC081BCD21299EF5B5A0DDEF3A139A1817503DDE',
}
]
def test_generate_128(self):
self._test_random_key(128)
def test_generate_512(self):
self._test_random_key(512)
def test_encryption(self):
for tv in self.tve:
for as_longs in (0,1):
d = self.convert_tv(tv, as_longs)
key = ElGamal.construct(d['key'])
ct = key.encrypt(d['pt'], d['k'])
self.assertEqual(ct[0], d['ct1'])
self.assertEqual(ct[1], d['ct2'])
def test_decryption(self):
for tv in self.tve:
for as_longs in (0,1):
d = self.convert_tv(tv, as_longs)
key = ElGamal.construct(d['key'])
pt = key.decrypt((d['ct1'], d['ct2']))
self.assertEqual(pt, d['pt'])
def test_signing(self):
for tv in self.tvs:
for as_longs in (0,1):
d = self.convert_tv(tv, as_longs)
key = ElGamal.construct(d['key'])
sig1, sig2 = key.sign(d['h'], d['k'])
self.assertEqual(sig1, d['sig1'])
self.assertEqual(sig2, d['sig2'])
def test_verification(self):
for tv in self.tvs:
for as_longs in (0,1):
d = self.convert_tv(tv, as_longs)
key = ElGamal.construct(d['key'])
# Positive test
res = key.verify( d['h'], (d['sig1'],d['sig2']) )
self.assertTrue(res)
# Negative test
res = key.verify( d['h'], (d['sig1']+1,d['sig2']) )
self.assertFalse(res)
def convert_tv(self, tv, as_longs=0):
"""Convert a test vector from textual form (hexadecimal ascii
to either integers or byte strings."""
key_comps = 'p','g','y','x'
tv2 = {}
for c in list(tv.keys()):
tv2[c] = a2b_hex(tv[c])
if as_longs or c in key_comps or c in ('sig1','sig2'):
tv2[c] = bytes_to_long(tv2[c])
tv2['key']=[]
for c in key_comps:
tv2['key'] += [tv2[c]]
del tv2[c]
return tv2
def _test_random_key(self, bits):
elgObj = ElGamal.generate(bits, Random.new().read)
self._check_private_key(elgObj)
self._exercise_primitive(elgObj)
pub = elgObj.publickey()
self._check_public_key(pub)
self._exercise_public_primitive(elgObj)
def _check_private_key(self, elgObj):
# Check capabilities
self.assertTrue(elgObj.has_private())
self.assertTrue(elgObj.can_sign())
self.assertTrue(elgObj.can_encrypt())
# Sanity check key data
self.assertTrue(1<elgObj.g<(elgObj.p-1))
self.assertEqual(pow(elgObj.g, elgObj.p-1, elgObj.p), 1)
self.assertTrue(1<elgObj.x<(elgObj.p-1))
self.assertEqual(pow(elgObj.g, elgObj.x, elgObj.p), elgObj.y)
def _check_public_key(self, elgObj):
# Check capabilities
self.assertFalse(elgObj.has_private())
self.assertTrue(elgObj.can_sign())
self.assertTrue(elgObj.can_encrypt())
# Sanity check key data
self.assertTrue(1<elgObj.g<(elgObj.p-1))
self.assertEqual(pow(elgObj.g, elgObj.p-1, elgObj.p), 1)
def _exercise_primitive(self, elgObj):
# Test encryption/decryption
plaintext = b("Test")
ciphertext = elgObj.encrypt(plaintext, 123456789)
plaintextP = elgObj.decrypt(ciphertext)
self.assertEqual(plaintext, plaintextP)
# Test signature/verification
signature = elgObj.sign(plaintext, 987654321)
elgObj.verify(plaintext, signature)
def _exercise_public_primitive(self, elgObj):
plaintext = b("Test")
ciphertext = elgObj.encrypt(plaintext, 123456789)
def get_tests(config={}):
tests = []
tests += list_test_cases(ElGamalTest)
return tests
if __name__ == '__main__':
suite = lambda: unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')

View file

@ -0,0 +1,415 @@
# -*- coding: utf-8 -*-
#
# SelfTest/PublicKey/test_RSA.py: Self-test for the RSA primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""Self-test suite for Crypto.PublicKey.RSA"""
__revision__ = "$Id$"
import sys
import os
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
from Crypto.Util.py21compat import *
from Crypto.Util.py3compat import *
import unittest
from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex
class RSATest(unittest.TestCase):
# Test vectors from "RSA-OAEP and RSA-PSS test vectors (.zip file)"
# ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
# See RSADSI's PKCS#1 page at
# http://www.rsa.com/rsalabs/node.asp?id=2125
# from oaep-int.txt
# TODO: PyCrypto treats the message as starting *after* the leading "00"
# TODO: That behaviour should probably be changed in the future.
plaintext = """
eb 7a 19 ac e9 e3 00 63 50 e3 29 50 4b 45 e2
ca 82 31 0b 26 dc d8 7d 5c 68 f1 ee a8 f5 52 67
c3 1b 2e 8b b4 25 1f 84 d7 e0 b2 c0 46 26 f5 af
f9 3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db
4c dc fe 4f f4 77 28 b4 a1 b7 c1 36 2b aa d2 9a
b4 8d 28 69 d5 02 41 21 43 58 11 59 1b e3 92 f9
82 fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4f
7b c2 75 19 52 81 ce 32 d2 f1 b7 6d 4d 35 3e 2d
"""
ciphertext = """
12 53 e0 4d c0 a5 39 7b b4 4a 7a b8 7e 9b f2 a0
39 a3 3d 1e 99 6f c8 2a 94 cc d3 00 74 c9 5d f7
63 72 20 17 06 9e 52 68 da 5d 1c 0b 4f 87 2c f6
53 c1 1d f8 23 14 a6 79 68 df ea e2 8d ef 04 bb
6d 84 b1 c3 1d 65 4a 19 70 e5 78 3b d6 eb 96 a0
24 c2 ca 2f 4a 90 fe 9f 2e f5 c9 c1 40 e5 bb 48
da 95 36 ad 87 00 c8 4f c9 13 0a de a7 4e 55 8d
51 a7 4d df 85 d8 b5 0d e9 68 38 d6 06 3e 09 55
"""
modulus = """
bb f8 2f 09 06 82 ce 9c 23 38 ac 2b 9d a8 71 f7
36 8d 07 ee d4 10 43 a4 40 d6 b6 f0 74 54 f5 1f
b8 df ba af 03 5c 02 ab 61 ea 48 ce eb 6f cd 48
76 ed 52 0d 60 e1 ec 46 19 71 9d 8a 5b 8b 80 7f
af b8 e0 a3 df c7 37 72 3e e6 b4 b7 d9 3a 25 84
ee 6a 64 9d 06 09 53 74 88 34 b2 45 45 98 39 4e
e0 aa b1 2d 7b 61 a5 1f 52 7a 9a 41 f6 c1 68 7f
e2 53 72 98 ca 2a 8f 59 46 f8 e5 fd 09 1d bd cb
"""
e = 0x11 # public exponent
prime_factor = """
c9 7f b1 f0 27 f4 53 f6 34 12 33 ea aa d1 d9 35
3f 6c 42 d0 88 66 b1 d0 5a 0f 20 35 02 8b 9d 86
98 40 b4 16 66 b4 2e 92 ea 0d a3 b4 32 04 b5 cf
ce 33 52 52 4d 04 16 a5 a4 41 e7 00 af 46 15 03
"""
def setUp(self):
global RSA, Random, bytes_to_long
from Crypto.PublicKey import RSA
from Crypto import Random
from Crypto.Util.number import bytes_to_long, inverse
self.n = bytes_to_long(a2b_hex(self.modulus))
self.p = bytes_to_long(a2b_hex(self.prime_factor))
# Compute q, d, and u from n, e, and p
self.q = divmod(self.n, self.p)[0]
self.d = inverse(self.e, (self.p-1)*(self.q-1))
self.u = inverse(self.p, self.q) # u = e**-1 (mod q)
self.rsa = RSA
def test_generate_1arg(self):
"""RSA (default implementation) generated key (1 argument)"""
rsaObj = self.rsa.generate(1024)
self._check_private_key(rsaObj)
self._exercise_primitive(rsaObj)
pub = rsaObj.publickey()
self._check_public_key(pub)
self._exercise_public_primitive(rsaObj)
def test_generate_2arg(self):
"""RSA (default implementation) generated key (2 arguments)"""
rsaObj = self.rsa.generate(1024, Random.new().read)
self._check_private_key(rsaObj)
self._exercise_primitive(rsaObj)
pub = rsaObj.publickey()
self._check_public_key(pub)
self._exercise_public_primitive(rsaObj)
def test_generate_3args(self):
rsaObj = self.rsa.generate(1024, Random.new().read,e=65537)
self._check_private_key(rsaObj)
self._exercise_primitive(rsaObj)
pub = rsaObj.publickey()
self._check_public_key(pub)
self._exercise_public_primitive(rsaObj)
self.assertEqual(65537,rsaObj.e)
def test_construct_2tuple(self):
"""RSA (default implementation) constructed key (2-tuple)"""
pub = self.rsa.construct((self.n, self.e))
self._check_public_key(pub)
self._check_encryption(pub)
self._check_verification(pub)
def test_construct_3tuple(self):
"""RSA (default implementation) constructed key (3-tuple)"""
rsaObj = self.rsa.construct((self.n, self.e, self.d))
self._check_encryption(rsaObj)
self._check_decryption(rsaObj)
self._check_signing(rsaObj)
self._check_verification(rsaObj)
def test_construct_4tuple(self):
"""RSA (default implementation) constructed key (4-tuple)"""
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p))
self._check_encryption(rsaObj)
self._check_decryption(rsaObj)
self._check_signing(rsaObj)
self._check_verification(rsaObj)
def test_construct_5tuple(self):
"""RSA (default implementation) constructed key (5-tuple)"""
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q))
self._check_private_key(rsaObj)
self._check_encryption(rsaObj)
self._check_decryption(rsaObj)
self._check_signing(rsaObj)
self._check_verification(rsaObj)
def test_construct_6tuple(self):
"""RSA (default implementation) constructed key (6-tuple)"""
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q, self.u))
self._check_private_key(rsaObj)
self._check_encryption(rsaObj)
self._check_decryption(rsaObj)
self._check_signing(rsaObj)
self._check_verification(rsaObj)
def test_factoring(self):
rsaObj = self.rsa.construct([self.n, self.e, self.d])
self.assertTrue(rsaObj.p==self.p or rsaObj.p==self.q)
self.assertTrue(rsaObj.q==self.p or rsaObj.q==self.q)
self.assertTrue(rsaObj.q*rsaObj.p == self.n)
self.assertRaises(ValueError, self.rsa.construct, [self.n, self.e, self.n-1])
def _check_private_key(self, rsaObj):
# Check capabilities
self.assertEqual(1, rsaObj.has_private())
self.assertEqual(1, rsaObj.can_sign())
self.assertEqual(1, rsaObj.can_encrypt())
self.assertEqual(1, rsaObj.can_blind())
# Check rsaObj.[nedpqu] -> rsaObj.key.[nedpqu] mapping
self.assertEqual(rsaObj.n, rsaObj.key.n)
self.assertEqual(rsaObj.e, rsaObj.key.e)
self.assertEqual(rsaObj.d, rsaObj.key.d)
self.assertEqual(rsaObj.p, rsaObj.key.p)
self.assertEqual(rsaObj.q, rsaObj.key.q)
self.assertEqual(rsaObj.u, rsaObj.key.u)
# Sanity check key data
self.assertEqual(rsaObj.n, rsaObj.p * rsaObj.q) # n = pq
self.assertEqual(1, rsaObj.d * rsaObj.e % ((rsaObj.p-1) * (rsaObj.q-1))) # ed = 1 (mod (p-1)(q-1))
self.assertEqual(1, rsaObj.p * rsaObj.u % rsaObj.q) # pu = 1 (mod q)
self.assertEqual(1, rsaObj.p > 1) # p > 1
self.assertEqual(1, rsaObj.q > 1) # q > 1
self.assertEqual(1, rsaObj.e > 1) # e > 1
self.assertEqual(1, rsaObj.d > 1) # d > 1
def _check_public_key(self, rsaObj):
ciphertext = a2b_hex(self.ciphertext)
# Check capabilities
self.assertEqual(0, rsaObj.has_private())
self.assertEqual(1, rsaObj.can_sign())
self.assertEqual(1, rsaObj.can_encrypt())
self.assertEqual(1, rsaObj.can_blind())
# Check rsaObj.[ne] -> rsaObj.key.[ne] mapping
self.assertEqual(rsaObj.n, rsaObj.key.n)
self.assertEqual(rsaObj.e, rsaObj.key.e)
# Check that private parameters are all missing
self.assertEqual(0, hasattr(rsaObj, 'd'))
self.assertEqual(0, hasattr(rsaObj, 'p'))
self.assertEqual(0, hasattr(rsaObj, 'q'))
self.assertEqual(0, hasattr(rsaObj, 'u'))
self.assertEqual(0, hasattr(rsaObj.key, 'd'))
self.assertEqual(0, hasattr(rsaObj.key, 'p'))
self.assertEqual(0, hasattr(rsaObj.key, 'q'))
self.assertEqual(0, hasattr(rsaObj.key, 'u'))
# Sanity check key data
self.assertEqual(1, rsaObj.e > 1) # e > 1
# Public keys should not be able to sign or decrypt
self.assertRaises(TypeError, rsaObj.sign, ciphertext, b(""))
self.assertRaises(TypeError, rsaObj.decrypt, ciphertext)
# Check __eq__ and __ne__
self.assertEqual(rsaObj.publickey() == rsaObj.publickey(),True) # assert_
self.assertEqual(rsaObj.publickey() != rsaObj.publickey(),False) # failIf
def _exercise_primitive(self, rsaObj):
# Since we're using a randomly-generated key, we can't check the test
# vector, but we can make sure encryption and decryption are inverse
# operations.
ciphertext = a2b_hex(self.ciphertext)
# Test decryption
plaintext = rsaObj.decrypt((ciphertext,))
# Test encryption (2 arguments)
(new_ciphertext2,) = rsaObj.encrypt(plaintext, b(""))
self.assertEqual(b2a_hex(ciphertext), b2a_hex(new_ciphertext2))
# Test blinded decryption
blinding_factor = Random.new().read(len(ciphertext)-1)
blinded_ctext = rsaObj.blind(ciphertext, blinding_factor)
blinded_ptext = rsaObj.decrypt((blinded_ctext,))
unblinded_plaintext = rsaObj.unblind(blinded_ptext, blinding_factor)
self.assertEqual(b2a_hex(plaintext), b2a_hex(unblinded_plaintext))
# Test signing (2 arguments)
signature2 = rsaObj.sign(ciphertext, b(""))
self.assertEqual((bytes_to_long(plaintext),), signature2)
# Test verification
self.assertEqual(1, rsaObj.verify(ciphertext, (bytes_to_long(plaintext),)))
def _exercise_public_primitive(self, rsaObj):
plaintext = a2b_hex(self.plaintext)
# Test encryption (2 arguments)
(new_ciphertext2,) = rsaObj.encrypt(plaintext, b(""))
# Exercise verification
rsaObj.verify(new_ciphertext2, (bytes_to_long(plaintext),))
def _check_encryption(self, rsaObj):
plaintext = a2b_hex(self.plaintext)
ciphertext = a2b_hex(self.ciphertext)
# Test encryption (2 arguments)
(new_ciphertext2,) = rsaObj.encrypt(plaintext, b(""))
self.assertEqual(b2a_hex(ciphertext), b2a_hex(new_ciphertext2))
def _check_decryption(self, rsaObj):
plaintext = a2b_hex(self.plaintext)
ciphertext = a2b_hex(self.ciphertext)
# Test plain decryption
new_plaintext = rsaObj.decrypt((ciphertext,))
self.assertEqual(b2a_hex(plaintext), b2a_hex(new_plaintext))
# Test blinded decryption
blinding_factor = Random.new().read(len(ciphertext)-1)
blinded_ctext = rsaObj.blind(ciphertext, blinding_factor)
blinded_ptext = rsaObj.decrypt((blinded_ctext,))
unblinded_plaintext = rsaObj.unblind(blinded_ptext, blinding_factor)
self.assertEqual(b2a_hex(plaintext), b2a_hex(unblinded_plaintext))
def _check_verification(self, rsaObj):
signature = bytes_to_long(a2b_hex(self.plaintext))
message = a2b_hex(self.ciphertext)
# Test verification
t = (signature,) # rsaObj.verify expects a tuple
self.assertEqual(1, rsaObj.verify(message, t))
# Test verification with overlong tuple (this is a
# backward-compatibility hack to support some harmless misuse of the
# API)
t2 = (signature, '')
self.assertEqual(1, rsaObj.verify(message, t2)) # extra garbage at end of tuple
def _check_signing(self, rsaObj):
signature = bytes_to_long(a2b_hex(self.plaintext))
message = a2b_hex(self.ciphertext)
# Test signing (2 argument)
self.assertEqual((signature,), rsaObj.sign(message, b("")))
class RSAFastMathTest(RSATest):
def setUp(self):
RSATest.setUp(self)
self.rsa = RSA.RSAImplementation(use_fast_math=True)
def test_generate_1arg(self):
"""RSA (_fastmath implementation) generated key (1 argument)"""
RSATest.test_generate_1arg(self)
def test_generate_2arg(self):
"""RSA (_fastmath implementation) generated key (2 arguments)"""
RSATest.test_generate_2arg(self)
def test_construct_2tuple(self):
"""RSA (_fastmath implementation) constructed key (2-tuple)"""
RSATest.test_construct_2tuple(self)
def test_construct_3tuple(self):
"""RSA (_fastmath implementation) constructed key (3-tuple)"""
RSATest.test_construct_3tuple(self)
def test_construct_4tuple(self):
"""RSA (_fastmath implementation) constructed key (4-tuple)"""
RSATest.test_construct_4tuple(self)
def test_construct_5tuple(self):
"""RSA (_fastmath implementation) constructed key (5-tuple)"""
RSATest.test_construct_5tuple(self)
def test_construct_6tuple(self):
"""RSA (_fastmath implementation) constructed key (6-tuple)"""
RSATest.test_construct_6tuple(self)
def test_factoring(self):
RSATest.test_factoring(self)
class RSASlowMathTest(RSATest):
def setUp(self):
RSATest.setUp(self)
self.rsa = RSA.RSAImplementation(use_fast_math=False)
def test_generate_1arg(self):
"""RSA (_slowmath implementation) generated key (1 argument)"""
RSATest.test_generate_1arg(self)
def test_generate_2arg(self):
"""RSA (_slowmath implementation) generated key (2 arguments)"""
RSATest.test_generate_2arg(self)
def test_construct_2tuple(self):
"""RSA (_slowmath implementation) constructed key (2-tuple)"""
RSATest.test_construct_2tuple(self)
def test_construct_3tuple(self):
"""RSA (_slowmath implementation) constructed key (3-tuple)"""
RSATest.test_construct_3tuple(self)
def test_construct_4tuple(self):
"""RSA (_slowmath implementation) constructed key (4-tuple)"""
RSATest.test_construct_4tuple(self)
def test_construct_5tuple(self):
"""RSA (_slowmath implementation) constructed key (5-tuple)"""
RSATest.test_construct_5tuple(self)
def test_construct_6tuple(self):
"""RSA (_slowmath implementation) constructed key (6-tuple)"""
RSATest.test_construct_6tuple(self)
def test_factoring(self):
RSATest.test_factoring(self)
def get_tests(config={}):
tests = []
tests += list_test_cases(RSATest)
try:
from Crypto.PublicKey import _fastmath
tests += list_test_cases(RSAFastMathTest)
except ImportError:
from distutils.sysconfig import get_config_var
import inspect
_fm_path = os.path.normpath(os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
+"/../../PublicKey/_fastmath"+get_config_var("SO"))
if os.path.exists(_fm_path):
raise ImportError("While the _fastmath module exists, importing "+
"it failed. This may point to the gmp or mpir shared library "+
"not being in the path. _fastmath was found at "+_fm_path)
if config.get('slow_tests',1):
tests += list_test_cases(RSASlowMathTest)
return tests
if __name__ == '__main__':
suite = lambda: unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')
# vim:set ts=4 sw=4 sts=4 expandtab:

View file

@ -0,0 +1,345 @@
# -*- coding: utf-8 -*-
#
# SelfTest/PublicKey/test_importKey.py: Self-test for importing RSA keys
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
__revision__ = "$Id$"
import unittest
from Crypto.PublicKey import RSA
from Crypto.SelfTest.st_common import *
from Crypto.Util.py3compat import *
from Crypto.Util.number import inverse
from Crypto.Util import asn1
def der2pem(der, text='PUBLIC'):
import binascii
chunks = [ binascii.b2a_base64(der[i:i+48]) for i in range(0, len(der), 48) ]
pem = b('-----BEGIN %s KEY-----\n' % text)
pem += b('').join(chunks)
pem += b('-----END %s KEY-----' % text)
return pem
class ImportKeyTests(unittest.TestCase):
# 512-bit RSA key generated with openssl
rsaKeyPEM = '''-----BEGIN RSA PRIVATE KEY-----
MIIBOwIBAAJBAL8eJ5AKoIsjURpcEoGubZMxLD7+kT+TLr7UkvEtFrRhDDKMtuII
q19FrL4pUIMymPMSLBn3hJLe30Dw48GQM4UCAwEAAQJACUSDEp8RTe32ftq8IwG8
Wojl5mAd1wFiIOrZ/Uv8b963WJOJiuQcVN29vxU5+My9GPZ7RA3hrDBEAoHUDPrI
OQIhAPIPLz4dphiD9imAkivY31Rc5AfHJiQRA7XixTcjEkojAiEAyh/pJHks/Mlr
+rdPNEpotBjfV4M4BkgGAA/ipcmaAjcCIQCHvhwwKVBLzzTscT2HeUdEeBMoiXXK
JACAr3sJQJGxIQIgarRp+m1WSKV1MciwMaTOnbU7wxFs9DP1pva76lYBzgUCIQC9
n0CnZCJ6IZYqSt0H5N7+Q+2Ro64nuwV/OSQfM6sBwQ==
-----END RSA PRIVATE KEY-----'''
# As above, but this is actually an unencrypted PKCS#8 key
rsaKeyPEM8 = '''-----BEGIN PRIVATE KEY-----
MIIBVQIBADANBgkqhkiG9w0BAQEFAASCAT8wggE7AgEAAkEAvx4nkAqgiyNRGlwS
ga5tkzEsPv6RP5MuvtSS8S0WtGEMMoy24girX0WsvilQgzKY8xIsGfeEkt7fQPDj
wZAzhQIDAQABAkAJRIMSnxFN7fZ+2rwjAbxaiOXmYB3XAWIg6tn9S/xv3rdYk4mK
5BxU3b2/FTn4zL0Y9ntEDeGsMEQCgdQM+sg5AiEA8g8vPh2mGIP2KYCSK9jfVFzk
B8cmJBEDteLFNyMSSiMCIQDKH+kkeSz8yWv6t080Smi0GN9XgzgGSAYAD+KlyZoC
NwIhAIe+HDApUEvPNOxxPYd5R0R4EyiJdcokAICvewlAkbEhAiBqtGn6bVZIpXUx
yLAxpM6dtTvDEWz0M/Wm9rvqVgHOBQIhAL2fQKdkInohlipK3Qfk3v5D7ZGjrie7
BX85JB8zqwHB
-----END PRIVATE KEY-----'''
# The same RSA private key as in rsaKeyPEM, but now encrypted
rsaKeyEncryptedPEM=(
# With DES and passphrase 'test'
('test', '''-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-CBC,AF8F9A40BD2FA2FC
Ckl9ex1kaVEWhYC2QBmfaF+YPiR4NFkRXA7nj3dcnuFEzBnY5XULupqQpQI3qbfA
u8GYS7+b3toWWiHZivHbAAUBPDIZG9hKDyB9Sq2VMARGsX1yW1zhNvZLIiVJzUHs
C6NxQ1IJWOXzTew/xM2I26kPwHIvadq+/VaT8gLQdjdH0jOiVNaevjWnLgrn1mLP
BCNRMdcexozWtAFNNqSzfW58MJL2OdMi21ED184EFytIc1BlB+FZiGZduwKGuaKy
9bMbdb/1PSvsSzPsqW7KSSrTw6MgJAFJg6lzIYvR5F4poTVBxwBX3+EyEmShiaNY
IRX3TgQI0IjrVuLmvlZKbGWP18FXj7I7k9tSsNOOzllTTdq3ny5vgM3A+ynfAaxp
dysKznQ6P+IoqML1WxAID4aGRMWka+uArOJ148Rbj9s=
-----END RSA PRIVATE KEY-----''',
"\xAF\x8F\x9A\x40\xBD\x2F\xA2\xFC"),
# With Triple-DES and passphrase 'rocking'
('rocking', '''-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,C05D6C07F7FC02F6
w4lwQrXaVoTTJ0GgwY566htTA2/t1YlimhxkxYt9AEeCcidS5M0Wq9ClPiPz9O7F
m6K5QpM1rxo1RUE/ZyI85gglRNPdNwkeTOqit+kum7nN73AToX17+irVmOA4Z9E+
4O07t91GxGMcjUSIFk0ucwEU4jgxRvYscbvOMvNbuZszGdVNzBTVddnShKCsy9i7
nJbPlXeEKYi/OkRgO4PtfqqWQu5GIEFVUf9ev1QV7AvC+kyWTR1wWYnHX265jU5c
sopxQQtP8XEHIJEdd5/p1oieRcWTCNyY8EkslxDSsrf0OtZp6mZH9N+KU47cgQtt
9qGORmlWnsIoFFKcDohbtOaWBTKhkj5h6OkLjFjfU/sBeV1c+7wDT3dAy5tawXjG
YSxC7qDQIT/RECvV3+oQKEcmpEujn45wAnkTi12BH30=
-----END RSA PRIVATE KEY-----''',
"\xC0\x5D\x6C\x07\xF7\xFC\x02\xF6"),
)
rsaPublicKeyPEM = '''-----BEGIN PUBLIC KEY-----
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAL8eJ5AKoIsjURpcEoGubZMxLD7+kT+T
Lr7UkvEtFrRhDDKMtuIIq19FrL4pUIMymPMSLBn3hJLe30Dw48GQM4UCAwEAAQ==
-----END PUBLIC KEY-----'''
# Obtained using 'ssh-keygen -i -m PKCS8 -f rsaPublicKeyPEM'
rsaPublicKeyOpenSSH = '''ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAQQC/HieQCqCLI1EaXBKBrm2TMSw+/pE/ky6+1JLxLRa0YQwyjLbiCKtfRay+KVCDMpjzEiwZ94SS3t9A8OPBkDOF comment\n'''
# The private key, in PKCS#1 format encoded with DER
rsaKeyDER = a2b_hex(
'''3082013b020100024100bf1e27900aa08b23511a5c1281ae6d93312c3efe
913f932ebed492f12d16b4610c328cb6e208ab5f45acbe2950833298f312
2c19f78492dedf40f0e3c190338502030100010240094483129f114dedf6
7edabc2301bc5a88e5e6601dd7016220ead9fd4bfc6fdeb75893898ae41c
54ddbdbf1539f8ccbd18f67b440de1ac30440281d40cfac839022100f20f
2f3e1da61883f62980922bd8df545ce407c726241103b5e2c53723124a23
022100ca1fe924792cfcc96bfab74f344a68b418df578338064806000fe2
a5c99a023702210087be1c3029504bcf34ec713d877947447813288975ca
240080af7b094091b12102206ab469fa6d5648a57531c8b031a4ce9db53b
c3116cf433f5a6f6bbea5601ce05022100bd9f40a764227a21962a4add07
e4defe43ed91a3ae27bb057f39241f33ab01c1
'''.replace(" ",""))
# The private key, in unencrypted PKCS#8 format encoded with DER
rsaKeyDER8 = a2b_hex(
'''30820155020100300d06092a864886f70d01010105000482013f3082013
b020100024100bf1e27900aa08b23511a5c1281ae6d93312c3efe913f932
ebed492f12d16b4610c328cb6e208ab5f45acbe2950833298f3122c19f78
492dedf40f0e3c190338502030100010240094483129f114dedf67edabc2
301bc5a88e5e6601dd7016220ead9fd4bfc6fdeb75893898ae41c54ddbdb
f1539f8ccbd18f67b440de1ac30440281d40cfac839022100f20f2f3e1da
61883f62980922bd8df545ce407c726241103b5e2c53723124a23022100c
a1fe924792cfcc96bfab74f344a68b418df578338064806000fe2a5c99a0
23702210087be1c3029504bcf34ec713d877947447813288975ca240080a
f7b094091b12102206ab469fa6d5648a57531c8b031a4ce9db53bc3116cf
433f5a6f6bbea5601ce05022100bd9f40a764227a21962a4add07e4defe4
3ed91a3ae27bb057f39241f33ab01c1
'''.replace(" ",""))
rsaPublicKeyDER = a2b_hex(
'''305c300d06092a864886f70d0101010500034b003048024100bf1e27900a
a08b23511a5c1281ae6d93312c3efe913f932ebed492f12d16b4610c328c
b6e208ab5f45acbe2950833298f3122c19f78492dedf40f0e3c190338502
03010001
'''.replace(" ",""))
n = int('BF 1E 27 90 0A A0 8B 23 51 1A 5C 12 81 AE 6D 93 31 2C 3E FE 91 3F 93 2E BE D4 92 F1 2D 16 B4 61 0C 32 8C B6 E2 08 AB 5F 45 AC BE 29 50 83 32 98 F3 12 2C 19 F7 84 92 DE DF 40 F0 E3 C1 90 33 85'.replace(" ",""),16)
e = 65537
d = int('09 44 83 12 9F 11 4D ED F6 7E DA BC 23 01 BC 5A 88 E5 E6 60 1D D7 01 62 20 EA D9 FD 4B FC 6F DE B7 58 93 89 8A E4 1C 54 DD BD BF 15 39 F8 CC BD 18 F6 7B 44 0D E1 AC 30 44 02 81 D4 0C FA C8 39'.replace(" ",""),16)
p = int('00 F2 0F 2F 3E 1D A6 18 83 F6 29 80 92 2B D8 DF 54 5C E4 07 C7 26 24 11 03 B5 E2 C5 37 23 12 4A 23'.replace(" ",""),16)
q = int('00 CA 1F E9 24 79 2C FC C9 6B FA B7 4F 34 4A 68 B4 18 DF 57 83 38 06 48 06 00 0F E2 A5 C9 9A 02 37'.replace(" ",""),16)
# This is q^{-1} mod p). fastmath and slowmath use pInv (p^{-1}
# mod q) instead!
qInv = int('00 BD 9F 40 A7 64 22 7A 21 96 2A 4A DD 07 E4 DE FE 43 ED 91 A3 AE 27 BB 05 7F 39 24 1F 33 AB 01 C1'.replace(" ",""),16)
pInv = inverse(p,q)
def testImportKey1(self):
"""Verify import of RSAPrivateKey DER SEQUENCE"""
key = self.rsa.importKey(self.rsaKeyDER)
self.assertTrue(key.has_private())
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
self.assertEqual(key.d, self.d)
self.assertEqual(key.p, self.p)
self.assertEqual(key.q, self.q)
def testImportKey2(self):
"""Verify import of SubjectPublicKeyInfo DER SEQUENCE"""
key = self.rsa.importKey(self.rsaPublicKeyDER)
self.assertFalse(key.has_private())
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
def testImportKey3unicode(self):
"""Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as unicode"""
key = RSA.importKey(self.rsaKeyPEM)
self.assertEqual(key.has_private(),True) # assert_
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
self.assertEqual(key.d, self.d)
self.assertEqual(key.p, self.p)
self.assertEqual(key.q, self.q)
def testImportKey3bytes(self):
"""Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as byte string"""
key = RSA.importKey(b(self.rsaKeyPEM))
self.assertEqual(key.has_private(),True) # assert_
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
self.assertEqual(key.d, self.d)
self.assertEqual(key.p, self.p)
self.assertEqual(key.q, self.q)
def testImportKey4unicode(self):
"""Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as unicode"""
key = RSA.importKey(self.rsaPublicKeyPEM)
self.assertEqual(key.has_private(),False) # failIf
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
def testImportKey4bytes(self):
"""Verify import of SubjectPublicKeyInfo DER SEQUENCE, encoded with PEM as byte string"""
key = RSA.importKey(b(self.rsaPublicKeyPEM))
self.assertEqual(key.has_private(),False) # failIf
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
def testImportKey5(self):
"""Verifies that the imported key is still a valid RSA pair"""
key = RSA.importKey(self.rsaKeyPEM)
idem = key.encrypt(key.decrypt(b("Test")),0)
self.assertEqual(idem[0],b("Test"))
def testImportKey6(self):
"""Verifies that the imported key is still a valid RSA pair"""
key = RSA.importKey(self.rsaKeyDER)
idem = key.encrypt(key.decrypt(b("Test")),0)
self.assertEqual(idem[0],b("Test"))
def testImportKey7(self):
"""Verify import of OpenSSH public key"""
key = self.rsa.importKey(self.rsaPublicKeyOpenSSH)
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
def testImportKey8(self):
"""Verify import of encrypted PrivateKeyInfo DER SEQUENCE"""
for t in self.rsaKeyEncryptedPEM:
key = self.rsa.importKey(t[1], t[0])
self.assertTrue(key.has_private())
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
self.assertEqual(key.d, self.d)
self.assertEqual(key.p, self.p)
self.assertEqual(key.q, self.q)
def testImportKey9(self):
"""Verify import of unencrypted PrivateKeyInfo DER SEQUENCE"""
key = self.rsa.importKey(self.rsaKeyDER8)
self.assertTrue(key.has_private())
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
self.assertEqual(key.d, self.d)
self.assertEqual(key.p, self.p)
self.assertEqual(key.q, self.q)
def testImportKey10(self):
"""Verify import of unencrypted PrivateKeyInfo DER SEQUENCE, encoded with PEM"""
key = self.rsa.importKey(self.rsaKeyPEM8)
self.assertTrue(key.has_private())
self.assertEqual(key.n, self.n)
self.assertEqual(key.e, self.e)
self.assertEqual(key.d, self.d)
self.assertEqual(key.p, self.p)
self.assertEqual(key.q, self.q)
def testImportKey11(self):
"""Verify import of RSAPublicKey DER SEQUENCE"""
der = asn1.DerSequence([17, 3]).encode()
key = self.rsa.importKey(der)
self.assertEqual(key.n, 17)
self.assertEqual(key.e, 3)
def testImportKey12(self):
"""Verify import of RSAPublicKey DER SEQUENCE, encoded with PEM"""
der = asn1.DerSequence([17, 3]).encode()
pem = der2pem(der)
key = self.rsa.importKey(pem)
self.assertEqual(key.n, 17)
self.assertEqual(key.e, 3)
###
def testExportKey1(self):
key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
derKey = key.exportKey("DER")
self.assertEqual(derKey, self.rsaKeyDER)
def testExportKey2(self):
key = self.rsa.construct([self.n, self.e])
derKey = key.exportKey("DER")
self.assertEqual(derKey, self.rsaPublicKeyDER)
def testExportKey3(self):
key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
pemKey = key.exportKey("PEM")
self.assertEqual(pemKey, b(self.rsaKeyPEM))
def testExportKey4(self):
key = self.rsa.construct([self.n, self.e])
pemKey = key.exportKey("PEM")
self.assertEqual(pemKey, b(self.rsaPublicKeyPEM))
def testExportKey5(self):
key = self.rsa.construct([self.n, self.e])
openssh_1 = key.exportKey("OpenSSH").split()
openssh_2 = self.rsaPublicKeyOpenSSH.split()
self.assertEqual(openssh_1[0], openssh_2[0])
self.assertEqual(openssh_1[1], openssh_2[1])
def testExportKey4(self):
key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
# Tuple with index #1 is encrypted with 3DES
t = list(map(b,self.rsaKeyEncryptedPEM[1]))
# Force the salt being used when exporting
key._randfunc = lambda N: (t[2]*divmod(N+len(t[2]),len(t[2]))[0])[:N]
pemKey = key.exportKey("PEM", t[0])
self.assertEqual(pemKey, t[1])
def testExportKey5(self):
key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
derKey = key.exportKey("DER", pkcs=8)
self.assertEqual(derKey, self.rsaKeyDER8)
def testExportKey6(self):
key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
pemKey = key.exportKey("PEM", pkcs=8)
self.assertEqual(pemKey, b(self.rsaKeyPEM8))
class ImportKeyTestsSlow(ImportKeyTests):
def setUp(self):
self.rsa = RSA.RSAImplementation(use_fast_math=0)
class ImportKeyTestsFast(ImportKeyTests):
def setUp(self):
self.rsa = RSA.RSAImplementation(use_fast_math=1)
if __name__ == '__main__':
unittest.main()
def get_tests(config={}):
tests = []
try:
from Crypto.PublicKey import _fastmath
tests += list_test_cases(ImportKeyTestsFast)
except ImportError:
pass
tests += list_test_cases(ImportKeyTestsSlow)
return tests
if __name__ == '__main__':
suite = lambda: unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')
# vim:set ts=4 sw=4 sts=4 expandtab: