openmedialibrary_platform_d.../lib/python3.5/site-packages/sqlalchemy/util/topological.py

101 lines
2.7 KiB
Python
Raw Normal View History

2016-02-06 09:36:57 +00:00
# util/topological.py
2016-02-22 12:17:39 +00:00
# Copyright (C) 2005-2016 the SQLAlchemy authors and contributors
2016-02-06 09:36:57 +00:00
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""Topological sorting algorithms."""
from ..exc import CircularDependencyError
from .. import util
__all__ = ['sort', 'sort_as_subsets', 'find_cycles']
2016-02-22 12:17:39 +00:00
def sort_as_subsets(tuples, allitems, deterministic_order=False):
2016-02-06 09:36:57 +00:00
edges = util.defaultdict(set)
for parent, child in tuples:
edges[child].add(parent)
2016-02-22 12:17:39 +00:00
Set = util.OrderedSet if deterministic_order else set
todo = Set(allitems)
2016-02-06 09:36:57 +00:00
while todo:
2016-02-22 12:17:39 +00:00
output = Set()
for node in todo:
if todo.isdisjoint(edges[node]):
2016-02-06 09:36:57 +00:00
output.add(node)
if not output:
raise CircularDependencyError(
"Circular dependency detected.",
find_cycles(tuples, allitems),
_gen_edges(edges)
)
todo.difference_update(output)
yield output
2016-02-22 12:17:39 +00:00
def sort(tuples, allitems, deterministic_order=False):
2016-02-06 09:36:57 +00:00
"""sort the given list of items by dependency.
'tuples' is a list of tuples representing a partial ordering.
2016-02-22 12:17:39 +00:00
'deterministic_order' keeps items within a dependency tier in list order.
2016-02-06 09:36:57 +00:00
"""
2016-02-22 12:17:39 +00:00
for set_ in sort_as_subsets(tuples, allitems, deterministic_order):
2016-02-06 09:36:57 +00:00
for s in set_:
yield s
def find_cycles(tuples, allitems):
# adapted from:
# http://neopythonic.blogspot.com/2009/01/detecting-cycles-in-directed-graph.html
edges = util.defaultdict(set)
for parent, child in tuples:
edges[parent].add(child)
nodes_to_test = set(edges)
output = set()
# we'd like to find all nodes that are
# involved in cycles, so we do the full
# pass through the whole thing for each
# node in the original list.
# we can go just through parent edge nodes.
# if a node is only a child and never a parent,
# by definition it can't be part of a cycle. same
# if it's not in the edges at all.
for node in nodes_to_test:
stack = [node]
todo = nodes_to_test.difference(stack)
while stack:
top = stack[-1]
for node in edges[top]:
if node in stack:
cyc = stack[stack.index(node):]
todo.difference_update(cyc)
output.update(cyc)
if node in todo:
stack.append(node)
todo.remove(node)
break
else:
node = stack.pop()
return output
def _gen_edges(edges):
return set([
(right, left)
for left in edges
for right in edges[left]
])