openmedialibrary_platform/Darwin/lib/python3.4/turtledemo/forest.py
2014-09-30 21:25:01 +02:00

109 lines
2.9 KiB
Python
Executable file

#!/usr/bin/env python3
""" turtlegraphics-example-suite:
tdemo_forest.py
Displays a 'forest' of 3 'breadth-first-trees'
similar to the one from example tree.
For further remarks see xtx_tree.py
This example is a 'breadth-first'-rewrite of
a Logo program written by Erich Neuwirth. See:
http://homepage.univie.ac.at/erich.neuwirth/
"""
from turtle import Turtle, colormode, tracer, mainloop
from random import randrange
from time import clock
def symRandom(n):
return randrange(-n,n+1)
def randomize( branchlist, angledist, sizedist ):
return [ (angle+symRandom(angledist),
sizefactor*1.01**symRandom(sizedist))
for angle, sizefactor in branchlist ]
def randomfd( t, distance, parts, angledist ):
for i in range(parts):
t.left(symRandom(angledist))
t.forward( (1.0 * distance)/parts )
def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
# benutzt Liste von turtles und Liste von Zweiglisten,
# fuer jede turtle eine!
if level > 0:
lst = []
brs = []
for t, branchlist in list(zip(tlist,branchlists)):
t.pensize( size * widthfactor )
t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
180 - 11 * level + symRandom(15),
0 )
t.pendown()
randomfd(t, size, level, angledist )
yield 1
for angle, sizefactor in branchlist:
t.left(angle)
lst.append(t.clone())
brs.append(randomize(branchlist, angledist, sizedist))
t.right(angle)
for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
angledist, sizedist):
yield None
def start(t,x,y):
colormode(255)
t.reset()
t.speed(0)
t.hideturtle()
t.left(90)
t.penup()
t.setpos(x,y)
t.pendown()
def doit1(level, pen):
pen.hideturtle()
start(pen, 20, -208)
t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
return t
def doit2(level, pen):
pen.hideturtle()
start(pen, -135, -130)
t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
return t
def doit3(level, pen):
pen.hideturtle()
start(pen, 190, -90)
t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
return t
# Hier 3 Baumgeneratoren:
def main():
p = Turtle()
p.ht()
tracer(75,0)
u = doit1(6, Turtle(undobuffersize=1))
s = doit2(7, Turtle(undobuffersize=1))
t = doit3(5, Turtle(undobuffersize=1))
a = clock()
while True:
done = 0
for b in u,s,t:
try:
b.__next__()
except:
done += 1
if done == 3:
break
tracer(1,10)
b = clock()
return "runtime: %.2f sec." % (b-a)
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()