update to tornado 4.0 and requests 2.3.0

This commit is contained in:
j 2014-08-12 10:44:01 +02:00
commit f187000dc9
239 changed files with 19071 additions and 20369 deletions

View file

@ -0,0 +1,3 @@
# This is a Python "namespace package" http://www.python.org/dev/peps/pep-0382/
from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

View file

@ -0,0 +1,51 @@
Python License (Python-2.0)
Python License, Version 2 (Python-2.0)
PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
--------------------------------------------
1. This LICENSE AGREEMENT is between the Python Software Foundation
("PSF"), and the Individual or Organization ("Licensee") accessing and
otherwise using this software ("Python") in source or binary form and
its associated documentation.
2. Subject to the terms and conditions of this License Agreement, PSF
hereby grants Licensee a nonexclusive, royalty-free, world-wide
license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python
alone or in any derivative version, provided, however, that PSF's
License Agreement and PSF's notice of copyright, i.e., "Copyright (c)
2001-2013 Python Software Foundation; All Rights Reserved" are retained in
Python alone or in any derivative version prepared by Licensee.
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python.
4. PSF is making Python available to Licensee on an "AS IS"
basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.
8. By copying, installing or otherwise using Python, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.

View file

@ -0,0 +1,52 @@
The ssl.match_hostname() function from Python 3.4
=================================================
The Secure Sockets layer is only actually *secure*
if you check the hostname in the certificate returned
by the server to which you are connecting,
and verify that it matches to hostname
that you are trying to reach.
But the matching logic, defined in `RFC2818`_,
can be a bit tricky to implement on your own.
So the ``ssl`` package in the Standard Library of Python 3.2
and greater now includes a ``match_hostname()`` function
for performing this check instead of requiring every application
to implement the check separately.
This backport brings ``match_hostname()`` to users
of earlier versions of Python.
Simply make this distribution a dependency of your package,
and then use it like this::
from backports.ssl_match_hostname import match_hostname, CertificateError
...
sslsock = ssl.wrap_socket(sock, ssl_version=ssl.PROTOCOL_SSLv3,
cert_reqs=ssl.CERT_REQUIRED, ca_certs=...)
try:
match_hostname(sslsock.getpeercert(), hostname)
except CertificateError, ce:
...
Note that the ``ssl`` module is only included in the Standard Library
for Python 2.6 and later;
users of Python 2.5 or earlier versions
will also need to install the ``ssl`` distribution
from the Python Package Index to use code like that shown above.
Brandon Craig Rhodes is merely the packager of this distribution;
the actual code inside comes verbatim from Python 3.4.
History
-------
* This function was introduced in python-3.2
* It was updated for python-3.4a1 for a CVE
(backports-ssl_match_hostname-3.4.0.1)
* It was updated from RFC2818 to RFC 6125 compliance in order to fix another
security flaw for python-3.3.3 and python-3.4a5
(backports-ssl_match_hostname-3.4.0.2)
.. _RFC2818: http://tools.ietf.org/html/rfc2818.html

View file

@ -0,0 +1,102 @@
"""The match_hostname() function from Python 3.3.3, essential when using SSL."""
import re
__version__ = '3.4.0.2'
class CertificateError(ValueError):
pass
def _dnsname_match(dn, hostname, max_wildcards=1):
"""Matching according to RFC 6125, section 6.4.3
http://tools.ietf.org/html/rfc6125#section-6.4.3
"""
pats = []
if not dn:
return False
# Ported from python3-syntax:
# leftmost, *remainder = dn.split(r'.')
parts = dn.split(r'.')
leftmost = parts[0]
remainder = parts[1:]
wildcards = leftmost.count('*')
if wildcards > max_wildcards:
# Issue #17980: avoid denials of service by refusing more
# than one wildcard per fragment. A survey of established
# policy among SSL implementations showed it to be a
# reasonable choice.
raise CertificateError(
"too many wildcards in certificate DNS name: " + repr(dn))
# speed up common case w/o wildcards
if not wildcards:
return dn.lower() == hostname.lower()
# RFC 6125, section 6.4.3, subitem 1.
# The client SHOULD NOT attempt to match a presented identifier in which
# the wildcard character comprises a label other than the left-most label.
if leftmost == '*':
# When '*' is a fragment by itself, it matches a non-empty dotless
# fragment.
pats.append('[^.]+')
elif leftmost.startswith('xn--') or hostname.startswith('xn--'):
# RFC 6125, section 6.4.3, subitem 3.
# The client SHOULD NOT attempt to match a presented identifier
# where the wildcard character is embedded within an A-label or
# U-label of an internationalized domain name.
pats.append(re.escape(leftmost))
else:
# Otherwise, '*' matches any dotless string, e.g. www*
pats.append(re.escape(leftmost).replace(r'\*', '[^.]*'))
# add the remaining fragments, ignore any wildcards
for frag in remainder:
pats.append(re.escape(frag))
pat = re.compile(r'\A' + r'\.'.join(pats) + r'\Z', re.IGNORECASE)
return pat.match(hostname)
def match_hostname(cert, hostname):
"""Verify that *cert* (in decoded format as returned by
SSLSocket.getpeercert()) matches the *hostname*. RFC 2818 and RFC 6125
rules are followed, but IP addresses are not accepted for *hostname*.
CertificateError is raised on failure. On success, the function
returns nothing.
"""
if not cert:
raise ValueError("empty or no certificate")
dnsnames = []
san = cert.get('subjectAltName', ())
for key, value in san:
if key == 'DNS':
if _dnsname_match(value, hostname):
return
dnsnames.append(value)
if not dnsnames:
# The subject is only checked when there is no dNSName entry
# in subjectAltName
for sub in cert.get('subject', ()):
for key, value in sub:
# XXX according to RFC 2818, the most specific Common Name
# must be used.
if key == 'commonName':
if _dnsname_match(value, hostname):
return
dnsnames.append(value)
if len(dnsnames) > 1:
raise CertificateError("hostname %r "
"doesn't match either of %s"
% (hostname, ', '.join(map(repr, dnsnames))))
elif len(dnsnames) == 1:
raise CertificateError("hostname %r "
"doesn't match %r"
% (hostname, dnsnames[0]))
else:
raise CertificateError("no appropriate commonName or "
"subjectAltName fields were found")