Switch to python3

This commit is contained in:
j 2014-09-30 18:15:32 +02:00
commit 9ba4b6a91a
5286 changed files with 677347 additions and 576888 deletions

View file

@ -0,0 +1,54 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.backends.multibackend import MultiBackend
from cryptography.hazmat.bindings.commoncrypto.binding import (
Binding as CommonCryptoBinding
)
from cryptography.hazmat.bindings.openssl.binding import (
Binding as OpenSSLBinding
)
_available_backends_list = None
def _available_backends():
global _available_backends_list
if _available_backends_list is None:
_available_backends_list = []
if CommonCryptoBinding.is_available():
from cryptography.hazmat.backends import commoncrypto
_available_backends_list.append(commoncrypto.backend)
if OpenSSLBinding.is_available():
from cryptography.hazmat.backends import openssl
_available_backends_list.append(openssl.backend)
return _available_backends_list
_default_backend = None
def default_backend():
global _default_backend
if _default_backend is None:
_default_backend = MultiBackend(_available_backends())
return _default_backend

View file

@ -0,0 +1,19 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.backends.commoncrypto.backend import backend
__all__ = ["backend"]

View file

@ -0,0 +1,253 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from collections import namedtuple
from cryptography import utils
from cryptography.exceptions import InternalError
from cryptography.hazmat.backends.commoncrypto.ciphers import (
_CipherContext, _GCMCipherContext
)
from cryptography.hazmat.backends.commoncrypto.hashes import _HashContext
from cryptography.hazmat.backends.commoncrypto.hmac import _HMACContext
from cryptography.hazmat.backends.interfaces import (
CipherBackend, HMACBackend, HashBackend, PBKDF2HMACBackend
)
from cryptography.hazmat.bindings.commoncrypto.binding import Binding
from cryptography.hazmat.primitives.ciphers.algorithms import (
AES, ARC4, Blowfish, CAST5, TripleDES
)
from cryptography.hazmat.primitives.ciphers.modes import (
CBC, CFB, CFB8, CTR, ECB, GCM, OFB
)
HashMethods = namedtuple(
"HashMethods", ["ctx", "hash_init", "hash_update", "hash_final"]
)
@utils.register_interface(CipherBackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
class Backend(object):
"""
CommonCrypto API wrapper.
"""
name = "commoncrypto"
def __init__(self):
self._binding = Binding()
self._ffi = self._binding.ffi
self._lib = self._binding.lib
self._cipher_registry = {}
self._register_default_ciphers()
self._hash_mapping = {
"md5": HashMethods(
"CC_MD5_CTX *", self._lib.CC_MD5_Init,
self._lib.CC_MD5_Update, self._lib.CC_MD5_Final
),
"sha1": HashMethods(
"CC_SHA1_CTX *", self._lib.CC_SHA1_Init,
self._lib.CC_SHA1_Update, self._lib.CC_SHA1_Final
),
"sha224": HashMethods(
"CC_SHA256_CTX *", self._lib.CC_SHA224_Init,
self._lib.CC_SHA224_Update, self._lib.CC_SHA224_Final
),
"sha256": HashMethods(
"CC_SHA256_CTX *", self._lib.CC_SHA256_Init,
self._lib.CC_SHA256_Update, self._lib.CC_SHA256_Final
),
"sha384": HashMethods(
"CC_SHA512_CTX *", self._lib.CC_SHA384_Init,
self._lib.CC_SHA384_Update, self._lib.CC_SHA384_Final
),
"sha512": HashMethods(
"CC_SHA512_CTX *", self._lib.CC_SHA512_Init,
self._lib.CC_SHA512_Update, self._lib.CC_SHA512_Final
),
}
self._supported_hmac_algorithms = {
"md5": self._lib.kCCHmacAlgMD5,
"sha1": self._lib.kCCHmacAlgSHA1,
"sha224": self._lib.kCCHmacAlgSHA224,
"sha256": self._lib.kCCHmacAlgSHA256,
"sha384": self._lib.kCCHmacAlgSHA384,
"sha512": self._lib.kCCHmacAlgSHA512,
}
self._supported_pbkdf2_hmac_algorithms = {
"sha1": self._lib.kCCPRFHmacAlgSHA1,
"sha224": self._lib.kCCPRFHmacAlgSHA224,
"sha256": self._lib.kCCPRFHmacAlgSHA256,
"sha384": self._lib.kCCPRFHmacAlgSHA384,
"sha512": self._lib.kCCPRFHmacAlgSHA512,
}
def hash_supported(self, algorithm):
return algorithm.name in self._hash_mapping
def hmac_supported(self, algorithm):
return algorithm.name in self._supported_hmac_algorithms
def create_hash_ctx(self, algorithm):
return _HashContext(self, algorithm)
def create_hmac_ctx(self, key, algorithm):
return _HMACContext(self, key, algorithm)
def cipher_supported(self, cipher, mode):
return (type(cipher), type(mode)) in self._cipher_registry
def create_symmetric_encryption_ctx(self, cipher, mode):
if isinstance(mode, GCM):
return _GCMCipherContext(
self, cipher, mode, self._lib.kCCEncrypt
)
else:
return _CipherContext(self, cipher, mode, self._lib.kCCEncrypt)
def create_symmetric_decryption_ctx(self, cipher, mode):
if isinstance(mode, GCM):
return _GCMCipherContext(
self, cipher, mode, self._lib.kCCDecrypt
)
else:
return _CipherContext(self, cipher, mode, self._lib.kCCDecrypt)
def pbkdf2_hmac_supported(self, algorithm):
return algorithm.name in self._supported_pbkdf2_hmac_algorithms
def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
key_material):
alg_enum = self._supported_pbkdf2_hmac_algorithms[algorithm.name]
buf = self._ffi.new("char[]", length)
res = self._lib.CCKeyDerivationPBKDF(
self._lib.kCCPBKDF2,
key_material,
len(key_material),
salt,
len(salt),
alg_enum,
iterations,
buf,
length
)
self._check_cipher_response(res)
return self._ffi.buffer(buf)[:]
def _register_cipher_adapter(self, cipher_cls, cipher_const, mode_cls,
mode_const):
if (cipher_cls, mode_cls) in self._cipher_registry:
raise ValueError("Duplicate registration for: {0} {1}.".format(
cipher_cls, mode_cls)
)
self._cipher_registry[cipher_cls, mode_cls] = (cipher_const,
mode_const)
def _register_default_ciphers(self):
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(CFB8, self._lib.kCCModeCFB8),
(OFB, self._lib.kCCModeOFB),
(CTR, self._lib.kCCModeCTR),
(GCM, self._lib.kCCModeGCM),
]:
self._register_cipher_adapter(
AES,
self._lib.kCCAlgorithmAES128,
mode_cls,
mode_const
)
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(CFB8, self._lib.kCCModeCFB8),
(OFB, self._lib.kCCModeOFB),
]:
self._register_cipher_adapter(
TripleDES,
self._lib.kCCAlgorithm3DES,
mode_cls,
mode_const
)
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(OFB, self._lib.kCCModeOFB)
]:
self._register_cipher_adapter(
Blowfish,
self._lib.kCCAlgorithmBlowfish,
mode_cls,
mode_const
)
for mode_cls, mode_const in [
(CBC, self._lib.kCCModeCBC),
(ECB, self._lib.kCCModeECB),
(CFB, self._lib.kCCModeCFB),
(OFB, self._lib.kCCModeOFB),
(CTR, self._lib.kCCModeCTR)
]:
self._register_cipher_adapter(
CAST5,
self._lib.kCCAlgorithmCAST,
mode_cls,
mode_const
)
self._register_cipher_adapter(
ARC4,
self._lib.kCCAlgorithmRC4,
type(None),
self._lib.kCCModeRC4
)
def _check_cipher_response(self, response):
if response == self._lib.kCCSuccess:
return
elif response == self._lib.kCCAlignmentError:
# This error is not currently triggered due to a bug filed as
# rdar://15589470
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
else:
raise InternalError(
"The backend returned an unknown error, consider filing a bug."
" Code: {0}.".format(response)
)
def _release_cipher_ctx(self, ctx):
"""
Called by the garbage collector and used to safely dereference and
release the context.
"""
if ctx[0] != self._ffi.NULL:
res = self._lib.CCCryptorRelease(ctx[0])
self._check_cipher_response(res)
ctx[0] = self._ffi.NULL
backend = Backend()

View file

@ -0,0 +1,191 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidTag, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import constant_time, interfaces
from cryptography.hazmat.primitives.ciphers.modes import (
CFB, CFB8, CTR, OFB
)
@utils.register_interface(interfaces.CipherContext)
class _CipherContext(object):
def __init__(self, backend, cipher, mode, operation):
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
# There is a bug in CommonCrypto where block ciphers do not raise
# kCCAlignmentError when finalizing if you supply non-block aligned
# data. To work around this we need to keep track of the block
# alignment ourselves, but only for alg+mode combos that require
# block alignment. OFB, CFB, and CTR make a block cipher algorithm
# into a stream cipher so we don't need to track them (and thus their
# block size is effectively 1 byte just like OpenSSL/CommonCrypto
# treat RC4 and other stream cipher block sizes).
# This bug has been filed as rdar://15589470
self._bytes_processed = 0
if (isinstance(cipher, interfaces.BlockCipherAlgorithm) and not
isinstance(mode, (OFB, CFB, CFB8, CTR))):
self._byte_block_size = cipher.block_size // 8
else:
self._byte_block_size = 1
registry = self._backend._cipher_registry
try:
cipher_enum, mode_enum = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
ctx = self._backend._ffi.new("CCCryptorRef *")
ctx = self._backend._ffi.gc(ctx, self._backend._release_cipher_ctx)
if isinstance(mode, interfaces.ModeWithInitializationVector):
iv_nonce = mode.initialization_vector
elif isinstance(mode, interfaces.ModeWithNonce):
iv_nonce = mode.nonce
else:
iv_nonce = self._backend._ffi.NULL
if isinstance(mode, CTR):
mode_option = self._backend._lib.kCCModeOptionCTR_BE
else:
mode_option = 0
res = self._backend._lib.CCCryptorCreateWithMode(
operation,
mode_enum, cipher_enum,
self._backend._lib.ccNoPadding, iv_nonce,
cipher.key, len(cipher.key),
self._backend._ffi.NULL, 0, 0, mode_option, ctx)
self._backend._check_cipher_response(res)
self._ctx = ctx
def update(self, data):
# Count bytes processed to handle block alignment.
self._bytes_processed += len(data)
buf = self._backend._ffi.new(
"unsigned char[]", len(data) + self._byte_block_size - 1)
outlen = self._backend._ffi.new("size_t *")
res = self._backend._lib.CCCryptorUpdate(
self._ctx[0], data, len(data), buf,
len(data) + self._byte_block_size - 1, outlen)
self._backend._check_cipher_response(res)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def finalize(self):
# Raise error if block alignment is wrong.
if self._bytes_processed % self._byte_block_size:
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
buf = self._backend._ffi.new("unsigned char[]", self._byte_block_size)
outlen = self._backend._ffi.new("size_t *")
res = self._backend._lib.CCCryptorFinal(
self._ctx[0], buf, len(buf), outlen)
self._backend._check_cipher_response(res)
self._backend._release_cipher_ctx(self._ctx)
return self._backend._ffi.buffer(buf)[:outlen[0]]
@utils.register_interface(interfaces.AEADCipherContext)
@utils.register_interface(interfaces.AEADEncryptionContext)
class _GCMCipherContext(object):
def __init__(self, backend, cipher, mode, operation):
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
self._tag = None
registry = self._backend._cipher_registry
try:
cipher_enum, mode_enum = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
ctx = self._backend._ffi.new("CCCryptorRef *")
ctx = self._backend._ffi.gc(ctx, self._backend._release_cipher_ctx)
self._ctx = ctx
res = self._backend._lib.CCCryptorCreateWithMode(
operation,
mode_enum, cipher_enum,
self._backend._lib.ccNoPadding,
self._backend._ffi.NULL,
cipher.key, len(cipher.key),
self._backend._ffi.NULL, 0, 0, 0, self._ctx)
self._backend._check_cipher_response(res)
res = self._backend._lib.CCCryptorGCMAddIV(
self._ctx[0],
mode.initialization_vector,
len(mode.initialization_vector)
)
self._backend._check_cipher_response(res)
def update(self, data):
buf = self._backend._ffi.new("unsigned char[]", len(data))
args = (self._ctx[0], data, len(data), buf)
if self._operation == self._backend._lib.kCCEncrypt:
res = self._backend._lib.CCCryptorGCMEncrypt(*args)
else:
res = self._backend._lib.CCCryptorGCMDecrypt(*args)
self._backend._check_cipher_response(res)
return self._backend._ffi.buffer(buf)[:]
def finalize(self):
tag_size = self._cipher.block_size // 8
tag_buf = self._backend._ffi.new("unsigned char[]", tag_size)
tag_len = self._backend._ffi.new("size_t *", tag_size)
res = self._backend._lib.CCCryptorGCMFinal(
self._ctx[0], tag_buf, tag_len
)
self._backend._check_cipher_response(res)
self._backend._release_cipher_ctx(self._ctx)
self._tag = self._backend._ffi.buffer(tag_buf)[:]
if (self._operation == self._backend._lib.kCCDecrypt and
not constant_time.bytes_eq(
self._tag[:len(self._mode.tag)], self._mode.tag
)):
raise InvalidTag
return b""
def authenticate_additional_data(self, data):
res = self._backend._lib.CCCryptorGCMAddAAD(
self._ctx[0], data, len(data)
)
self._backend._check_cipher_response(res)
@property
def tag(self):
return self._tag

View file

@ -0,0 +1,62 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import interfaces
@utils.register_interface(interfaces.HashContext)
class _HashContext(object):
def __init__(self, backend, algorithm, ctx=None):
self.algorithm = algorithm
self._backend = backend
if ctx is None:
try:
methods = self._backend._hash_mapping[self.algorithm.name]
except KeyError:
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
ctx = self._backend._ffi.new(methods.ctx)
res = methods.hash_init(ctx)
assert res == 1
self._ctx = ctx
def copy(self):
methods = self._backend._hash_mapping[self.algorithm.name]
new_ctx = self._backend._ffi.new(methods.ctx)
# CommonCrypto has no APIs for copying hashes, so we have to copy the
# underlying struct.
new_ctx[0] = self._ctx[0]
return _HashContext(self._backend, self.algorithm, ctx=new_ctx)
def update(self, data):
methods = self._backend._hash_mapping[self.algorithm.name]
res = methods.hash_update(self._ctx, data, len(data))
assert res == 1
def finalize(self):
methods = self._backend._hash_mapping[self.algorithm.name]
buf = self._backend._ffi.new("unsigned char[]",
self.algorithm.digest_size)
res = methods.hash_final(buf, self._ctx)
assert res == 1
return self._backend._ffi.buffer(buf)[:]

View file

@ -0,0 +1,58 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import interfaces
@utils.register_interface(interfaces.HashContext)
class _HMACContext(object):
def __init__(self, backend, key, algorithm, ctx=None):
self.algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._ffi.new("CCHmacContext *")
try:
alg = self._backend._supported_hmac_algorithms[algorithm.name]
except KeyError:
raise UnsupportedAlgorithm(
"{0} is not a supported HMAC hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
self._backend._lib.CCHmacInit(ctx, alg, key, len(key))
self._ctx = ctx
self._key = key
def copy(self):
copied_ctx = self._backend._ffi.new("CCHmacContext *")
# CommonCrypto has no APIs for copying HMACs, so we have to copy the
# underlying struct.
copied_ctx[0] = self._ctx[0]
return _HMACContext(
self._backend, self._key, self.algorithm, ctx=copied_ctx
)
def update(self, data):
self._backend._lib.CCHmacUpdate(self._ctx, data, len(data))
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]",
self.algorithm.digest_size)
self._backend._lib.CCHmacFinal(self._ctx, buf)
return self._backend._ffi.buffer(buf)[:]

View file

@ -0,0 +1,292 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class CipherBackend(object):
@abc.abstractmethod
def cipher_supported(self, cipher, mode):
"""
Return True if the given cipher and mode are supported.
"""
@abc.abstractmethod
def create_symmetric_encryption_ctx(self, cipher, mode):
"""
Get a CipherContext that can be used for encryption.
"""
@abc.abstractmethod
def create_symmetric_decryption_ctx(self, cipher, mode):
"""
Get a CipherContext that can be used for decryption.
"""
@six.add_metaclass(abc.ABCMeta)
class HashBackend(object):
@abc.abstractmethod
def hash_supported(self, algorithm):
"""
Return True if the hash algorithm is supported by this backend.
"""
@abc.abstractmethod
def create_hash_ctx(self, algorithm):
"""
Create a HashContext for calculating a message digest.
"""
@six.add_metaclass(abc.ABCMeta)
class HMACBackend(object):
@abc.abstractmethod
def hmac_supported(self, algorithm):
"""
Return True if the hash algorithm is supported for HMAC by this
backend.
"""
@abc.abstractmethod
def create_hmac_ctx(self, key, algorithm):
"""
Create a HashContext for calculating a message authentication code.
"""
@six.add_metaclass(abc.ABCMeta)
class PBKDF2HMACBackend(object):
@abc.abstractmethod
def pbkdf2_hmac_supported(self, algorithm):
"""
Return True if the hash algorithm is supported for PBKDF2 by this
backend.
"""
@abc.abstractmethod
def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
key_material):
"""
Return length bytes derived from provided PBKDF2 parameters.
"""
@six.add_metaclass(abc.ABCMeta)
class RSABackend(object):
@abc.abstractmethod
def generate_rsa_private_key(self, public_exponent, key_size):
"""
Generate an RSAPrivateKey instance with public_exponent and a modulus
of key_size bits.
"""
@abc.abstractmethod
def create_rsa_signature_ctx(self, private_key, padding, algorithm):
"""
Returns an object conforming to the AsymmetricSignatureContext
interface.
"""
@abc.abstractmethod
def create_rsa_verification_ctx(self, public_key, signature, padding,
algorithm):
"""
Returns an object conforming to the AsymmetricVerificationContext
interface.
"""
@abc.abstractmethod
def mgf1_hash_supported(self, algorithm):
"""
Return True if the hash algorithm is supported for MGF1 in PSS.
"""
@abc.abstractmethod
def decrypt_rsa(self, private_key, ciphertext, padding):
"""
Returns decrypted bytes.
"""
@abc.abstractmethod
def encrypt_rsa(self, public_key, plaintext, padding):
"""
Returns encrypted bytes.
"""
@abc.abstractmethod
def rsa_padding_supported(self, padding):
"""
Returns True if the backend supports the given padding options.
"""
@abc.abstractmethod
def generate_rsa_parameters_supported(self, public_exponent, key_size):
"""
Returns True if the backend supports the given parameters for key
generation.
"""
@abc.abstractmethod
def load_rsa_private_numbers(self, numbers):
"""
Returns an RSAPrivateKey provider.
"""
@abc.abstractmethod
def load_rsa_public_numbers(self, numbers):
"""
Returns an RSAPublicKey provider.
"""
@six.add_metaclass(abc.ABCMeta)
class DSABackend(object):
@abc.abstractmethod
def generate_dsa_parameters(self, key_size):
"""
Generate a DSAParameters instance with a modulus of key_size bits.
"""
@abc.abstractmethod
def generate_dsa_private_key(self, parameters):
"""
Generate a DSAPrivateKey instance with parameters as a DSAParameters
object.
"""
@abc.abstractmethod
def generate_dsa_private_key_and_parameters(self, key_size):
"""
Generate a DSAPrivateKey instance using key size only.
"""
@abc.abstractmethod
def create_dsa_signature_ctx(self, private_key, algorithm):
"""
Returns an object conforming to the AsymmetricSignatureContext
interface.
"""
@abc.abstractmethod
def create_dsa_verification_ctx(self, public_key, signature, algorithm):
"""
Returns an object conforming to the AsymmetricVerificationContext
interface.
"""
@abc.abstractmethod
def dsa_hash_supported(self, algorithm):
"""
Return True if the hash algorithm is supported by the backend for DSA.
"""
@abc.abstractmethod
def dsa_parameters_supported(self, p, q, g):
"""
Return True if the parameters are supported by the backend for DSA.
"""
@abc.abstractmethod
def load_dsa_private_numbers(self, numbers):
"""
Returns a DSAPrivateKey provider.
"""
@abc.abstractmethod
def load_dsa_public_numbers(self, numbers):
"""
Returns a DSAPublicKey provider.
"""
@abc.abstractmethod
def load_dsa_parameter_numbers(self, numbers):
"""
Returns a DSAParameters provider.
"""
@six.add_metaclass(abc.ABCMeta)
class TraditionalOpenSSLSerializationBackend(object):
@abc.abstractmethod
def load_traditional_openssl_pem_private_key(self, data, password):
"""
Load a private key from PEM encoded data, using password if the data
is encrypted.
"""
@six.add_metaclass(abc.ABCMeta)
class PKCS8SerializationBackend(object):
@abc.abstractmethod
def load_pkcs8_pem_private_key(self, data, password):
"""
Load a private key from PEM encoded data, using password if the data
is encrypted.
"""
@six.add_metaclass(abc.ABCMeta)
class CMACBackend(object):
@abc.abstractmethod
def cmac_algorithm_supported(self, algorithm):
"""
Returns True if the block cipher is supported for CMAC by this backend
"""
@abc.abstractmethod
def create_cmac_ctx(self, algorithm):
"""
Create a CMACContext for calculating a message authentication code.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurveBackend(object):
@abc.abstractmethod
def elliptic_curve_signature_algorithm_supported(
self, signature_algorithm, curve
):
"""
Returns True if the backend supports the named elliptic curve with the
specified signature algorithm.
"""
@abc.abstractmethod
def elliptic_curve_supported(self, curve):
"""
Returns True if the backend supports the named elliptic curve.
"""
@abc.abstractmethod
def generate_elliptic_curve_private_key(self, curve):
"""
Return an object conforming to the EllipticCurvePrivateKey interface.
"""
@abc.abstractmethod
def elliptic_curve_public_key_from_numbers(self, numbers):
"""
Return an EllipticCurvePublicKey provider using the given numbers.
"""
@abc.abstractmethod
def elliptic_curve_private_key_from_numbers(self, numbers):
"""
Return an EllipticCurvePublicKey provider using the given numbers.
"""

View file

@ -0,0 +1,327 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.backends.interfaces import (
CMACBackend, CipherBackend, DSABackend, EllipticCurveBackend, HMACBackend,
HashBackend, PBKDF2HMACBackend, PKCS8SerializationBackend,
RSABackend, TraditionalOpenSSLSerializationBackend
)
@utils.register_interface(CMACBackend)
@utils.register_interface(CipherBackend)
@utils.register_interface(HashBackend)
@utils.register_interface(HMACBackend)
@utils.register_interface(PBKDF2HMACBackend)
@utils.register_interface(PKCS8SerializationBackend)
@utils.register_interface(RSABackend)
@utils.register_interface(TraditionalOpenSSLSerializationBackend)
@utils.register_interface(DSABackend)
@utils.register_interface(EllipticCurveBackend)
class MultiBackend(object):
name = "multibackend"
def __init__(self, backends):
self._backends = backends
def _filtered_backends(self, interface):
for b in self._backends:
if isinstance(b, interface):
yield b
def cipher_supported(self, algorithm, mode):
return any(
b.cipher_supported(algorithm, mode)
for b in self._filtered_backends(CipherBackend)
)
def create_symmetric_encryption_ctx(self, algorithm, mode):
for b in self._filtered_backends(CipherBackend):
try:
return b.create_symmetric_encryption_ctx(algorithm, mode)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported by this backend.".format(
algorithm.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
def create_symmetric_decryption_ctx(self, algorithm, mode):
for b in self._filtered_backends(CipherBackend):
try:
return b.create_symmetric_decryption_ctx(algorithm, mode)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported by this backend.".format(
algorithm.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
def hash_supported(self, algorithm):
return any(
b.hash_supported(algorithm)
for b in self._filtered_backends(HashBackend)
)
def create_hash_ctx(self, algorithm):
for b in self._filtered_backends(HashBackend):
try:
return b.create_hash_ctx(algorithm)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
def hmac_supported(self, algorithm):
return any(
b.hmac_supported(algorithm)
for b in self._filtered_backends(HMACBackend)
)
def create_hmac_ctx(self, key, algorithm):
for b in self._filtered_backends(HMACBackend):
try:
return b.create_hmac_ctx(key, algorithm)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
def pbkdf2_hmac_supported(self, algorithm):
return any(
b.pbkdf2_hmac_supported(algorithm)
for b in self._filtered_backends(PBKDF2HMACBackend)
)
def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
key_material):
for b in self._filtered_backends(PBKDF2HMACBackend):
try:
return b.derive_pbkdf2_hmac(
algorithm, length, salt, iterations, key_material
)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
def generate_rsa_private_key(self, public_exponent, key_size):
for b in self._filtered_backends(RSABackend):
return b.generate_rsa_private_key(public_exponent, key_size)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_rsa_parameters_supported(self, public_exponent, key_size):
for b in self._filtered_backends(RSABackend):
return b.generate_rsa_parameters_supported(
public_exponent, key_size
)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def create_rsa_signature_ctx(self, private_key, padding, algorithm):
for b in self._filtered_backends(RSABackend):
return b.create_rsa_signature_ctx(private_key, padding, algorithm)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def create_rsa_verification_ctx(self, public_key, signature, padding,
algorithm):
for b in self._filtered_backends(RSABackend):
return b.create_rsa_verification_ctx(public_key, signature,
padding, algorithm)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def mgf1_hash_supported(self, algorithm):
for b in self._filtered_backends(RSABackend):
return b.mgf1_hash_supported(algorithm)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def decrypt_rsa(self, private_key, ciphertext, padding):
for b in self._filtered_backends(RSABackend):
return b.decrypt_rsa(private_key, ciphertext, padding)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def encrypt_rsa(self, public_key, plaintext, padding):
for b in self._filtered_backends(RSABackend):
return b.encrypt_rsa(public_key, plaintext, padding)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def rsa_padding_supported(self, padding):
for b in self._filtered_backends(RSABackend):
return b.rsa_padding_supported(padding)
raise UnsupportedAlgorithm("RSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def load_rsa_private_numbers(self, numbers):
for b in self._filtered_backends(RSABackend):
return b.load_rsa_private_numbers(numbers)
raise UnsupportedAlgorithm("RSA is not supported by the backend",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def load_rsa_public_numbers(self, numbers):
for b in self._filtered_backends(RSABackend):
return b.load_rsa_public_numbers(numbers)
raise UnsupportedAlgorithm("RSA is not supported by the backend",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_dsa_parameters(self, key_size):
for b in self._filtered_backends(DSABackend):
return b.generate_dsa_parameters(key_size)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_dsa_private_key(self, parameters):
for b in self._filtered_backends(DSABackend):
return b.generate_dsa_private_key(parameters)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def generate_dsa_private_key_and_parameters(self, key_size):
for b in self._filtered_backends(DSABackend):
return b.generate_dsa_private_key_and_parameters(key_size)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def create_dsa_verification_ctx(self, public_key, signature, algorithm):
for b in self._filtered_backends(DSABackend):
return b.create_dsa_verification_ctx(public_key, signature,
algorithm)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def create_dsa_signature_ctx(self, private_key, algorithm):
for b in self._filtered_backends(DSABackend):
return b.create_dsa_signature_ctx(private_key, algorithm)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def dsa_hash_supported(self, algorithm):
for b in self._filtered_backends(DSABackend):
return b.dsa_hash_supported(algorithm)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def dsa_parameters_supported(self, p, q, g):
for b in self._filtered_backends(DSABackend):
return b.dsa_parameters_supported(p, q, g)
raise UnsupportedAlgorithm("DSA is not supported by the backend.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def cmac_algorithm_supported(self, algorithm):
return any(
b.cmac_algorithm_supported(algorithm)
for b in self._filtered_backends(CMACBackend)
)
def create_cmac_ctx(self, algorithm):
for b in self._filtered_backends(CMACBackend):
try:
return b.create_cmac_ctx(algorithm)
except UnsupportedAlgorithm:
pass
raise UnsupportedAlgorithm("This backend does not support CMAC.",
_Reasons.UNSUPPORTED_CIPHER)
def elliptic_curve_supported(self, curve):
return any(
b.elliptic_curve_supported(curve)
for b in self._filtered_backends(EllipticCurveBackend)
)
def elliptic_curve_signature_algorithm_supported(
self, signature_algorithm, curve
):
return any(
b.elliptic_curve_signature_algorithm_supported(
signature_algorithm, curve
)
for b in self._filtered_backends(EllipticCurveBackend)
)
def generate_elliptic_curve_private_key(self, curve):
for b in self._filtered_backends(EllipticCurveBackend):
try:
return b.generate_elliptic_curve_private_key(curve)
except UnsupportedAlgorithm:
continue
raise UnsupportedAlgorithm(
"This backend does not support this elliptic curve.",
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
def elliptic_curve_private_key_from_numbers(self, numbers):
for b in self._filtered_backends(EllipticCurveBackend):
try:
return b.elliptic_curve_private_key_from_numbers(numbers)
except UnsupportedAlgorithm:
continue
raise UnsupportedAlgorithm(
"This backend does not support this elliptic curve.",
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
def elliptic_curve_public_key_from_numbers(self, numbers):
for b in self._filtered_backends(EllipticCurveBackend):
try:
return b.elliptic_curve_public_key_from_numbers(numbers)
except UnsupportedAlgorithm:
continue
raise UnsupportedAlgorithm(
"This backend does not support this elliptic curve.",
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
def load_pkcs8_pem_private_key(self, data, password):
for b in self._filtered_backends(PKCS8SerializationBackend):
return b.load_pkcs8_pem_private_key(data, password)
raise UnsupportedAlgorithm(
"This backend does not support this key serialization.",
_Reasons.UNSUPPORTED_SERIALIZATION
)
def load_traditional_openssl_pem_private_key(self, data, password):
for b in self._filtered_backends(
TraditionalOpenSSLSerializationBackend
):
return b.load_traditional_openssl_pem_private_key(data, password)
raise UnsupportedAlgorithm(
"This backend does not support this key serialization.",
_Reasons.UNSUPPORTED_SERIALIZATION
)

View file

@ -0,0 +1,19 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.backends.openssl.backend import backend
__all__ = ["backend"]

View file

@ -0,0 +1,219 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import InvalidTag, UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import interfaces
from cryptography.hazmat.primitives.ciphers.modes import GCM
@utils.register_interface(interfaces.CipherContext)
@utils.register_interface(interfaces.AEADCipherContext)
@utils.register_interface(interfaces.AEADEncryptionContext)
class _CipherContext(object):
_ENCRYPT = 1
_DECRYPT = 0
def __init__(self, backend, cipher, mode, operation):
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
self._tag = None
if isinstance(self._cipher, interfaces.BlockCipherAlgorithm):
self._block_size = self._cipher.block_size
else:
self._block_size = 1
ctx = self._backend._lib.EVP_CIPHER_CTX_new()
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.EVP_CIPHER_CTX_free
)
registry = self._backend._cipher_registry
try:
adapter = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
evp_cipher = adapter(self._backend, cipher, mode)
if evp_cipher == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"cipher {0} in {1} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
if isinstance(mode, interfaces.ModeWithInitializationVector):
iv_nonce = mode.initialization_vector
elif isinstance(mode, interfaces.ModeWithNonce):
iv_nonce = mode.nonce
else:
iv_nonce = self._backend._ffi.NULL
# begin init with cipher and operation type
res = self._backend._lib.EVP_CipherInit_ex(ctx, evp_cipher,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
operation)
assert res != 0
# set the key length to handle variable key ciphers
res = self._backend._lib.EVP_CIPHER_CTX_set_key_length(
ctx, len(cipher.key)
)
assert res != 0
if isinstance(mode, GCM):
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, self._backend._lib.EVP_CTRL_GCM_SET_IVLEN,
len(iv_nonce), self._backend._ffi.NULL
)
assert res != 0
if operation == self._DECRYPT:
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, self._backend._lib.EVP_CTRL_GCM_SET_TAG,
len(mode.tag), mode.tag
)
assert res != 0
# pass key/iv
res = self._backend._lib.EVP_CipherInit_ex(
ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
cipher.key,
iv_nonce,
operation
)
assert res != 0
# We purposely disable padding here as it's handled higher up in the
# API.
self._backend._lib.EVP_CIPHER_CTX_set_padding(ctx, 0)
self._ctx = ctx
def update(self, data):
# OpenSSL 0.9.8e has an assertion in its EVP code that causes it
# to SIGABRT if you call update with an empty byte string. This can be
# removed when we drop support for 0.9.8e (CentOS/RHEL 5). This branch
# should be taken only when length is zero and mode is not GCM because
# AES GCM can return improper tag values if you don't call update
# with empty plaintext when authenticating AAD for ...reasons.
if len(data) == 0 and not isinstance(self._mode, GCM):
return b""
buf = self._backend._ffi.new("unsigned char[]",
len(data) + self._block_size - 1)
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherUpdate(self._ctx, buf, outlen, data,
len(data))
assert res != 0
return self._backend._ffi.buffer(buf)[:outlen[0]]
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]", self._block_size)
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherFinal_ex(self._ctx, buf, outlen)
if res == 0:
errors = self._backend._consume_errors()
if not errors and isinstance(self._mode, GCM):
raise InvalidTag
assert errors
if errors[0][1:] == (
self._backend._lib.ERR_LIB_EVP,
self._backend._lib.EVP_F_EVP_ENCRYPTFINAL_EX,
self._backend._lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
) or errors[0][1:] == (
self._backend._lib.ERR_LIB_EVP,
self._backend._lib.EVP_F_EVP_DECRYPTFINAL_EX,
self._backend._lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
):
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
else:
raise self._backend._unknown_error(errors[0])
if (isinstance(self._mode, GCM) and
self._operation == self._ENCRYPT):
block_byte_size = self._block_size // 8
tag_buf = self._backend._ffi.new(
"unsigned char[]", block_byte_size
)
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
self._ctx, self._backend._lib.EVP_CTRL_GCM_GET_TAG,
block_byte_size, tag_buf
)
assert res != 0
self._tag = self._backend._ffi.buffer(tag_buf)[:]
res = self._backend._lib.EVP_CIPHER_CTX_cleanup(self._ctx)
assert res == 1
return self._backend._ffi.buffer(buf)[:outlen[0]]
def authenticate_additional_data(self, data):
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherUpdate(
self._ctx, self._backend._ffi.NULL, outlen, data, len(data)
)
assert res != 0
@property
def tag(self):
return self._tag
@utils.register_interface(interfaces.CipherContext)
class _AESCTRCipherContext(object):
"""
This is needed to provide support for AES CTR mode in OpenSSL 0.9.8. It can
be removed when we drop 0.9.8 support (RHEL5 extended life ends 2020).
"""
def __init__(self, backend, cipher, mode):
self._backend = backend
self._key = self._backend._ffi.new("AES_KEY *")
assert self._key != self._backend._ffi.NULL
res = self._backend._lib.AES_set_encrypt_key(
cipher.key, len(cipher.key) * 8, self._key
)
assert res == 0
self._ecount = self._backend._ffi.new("char[]", 16)
self._nonce = self._backend._ffi.new("char[16]", mode.nonce)
self._num = self._backend._ffi.new("unsigned int *", 0)
def update(self, data):
buf = self._backend._ffi.new("unsigned char[]", len(data))
self._backend._lib.AES_ctr128_encrypt(
data, buf, len(data), self._key, self._nonce,
self._ecount, self._num
)
return self._backend._ffi.buffer(buf)[:]
def finalize(self):
self._key = None
self._ecount = None
self._nonce = None
self._num = None
return b""

View file

@ -0,0 +1,80 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import interfaces
from cryptography.hazmat.primitives.ciphers.modes import CBC
@utils.register_interface(interfaces.CMACContext)
class _CMACContext(object):
def __init__(self, backend, algorithm, ctx=None):
if not backend.cmac_algorithm_supported(algorithm):
raise UnsupportedAlgorithm("This backend does not support CMAC.",
_Reasons.UNSUPPORTED_CIPHER)
self._backend = backend
self._key = algorithm.key
self._algorithm = algorithm
self._output_length = algorithm.block_size // 8
if ctx is None:
registry = self._backend._cipher_registry
adapter = registry[type(algorithm), CBC]
evp_cipher = adapter(self._backend, algorithm, CBC)
ctx = self._backend._lib.CMAC_CTX_new()
assert ctx != self._backend._ffi.NULL
ctx = self._backend._ffi.gc(ctx, self._backend._lib.CMAC_CTX_free)
self._backend._lib.CMAC_Init(
ctx, self._key, len(self._key),
evp_cipher, self._backend._ffi.NULL
)
self._ctx = ctx
def update(self, data):
res = self._backend._lib.CMAC_Update(self._ctx, data, len(data))
assert res == 1
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]", self._output_length)
length = self._backend._ffi.new("size_t *", self._output_length)
res = self._backend._lib.CMAC_Final(
self._ctx, buf, length
)
assert res == 1
self._ctx = None
return self._backend._ffi.buffer(buf)[:]
def copy(self):
copied_ctx = self._backend._lib.CMAC_CTX_new()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.CMAC_CTX_free
)
res = self._backend._lib.CMAC_CTX_copy(
copied_ctx, self._ctx
)
assert res == 1
return _CMACContext(
self._backend, self._algorithm, ctx=copied_ctx
)

View file

@ -0,0 +1,190 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.primitives import hashes, interfaces
from cryptography.hazmat.primitives.asymmetric import dsa
from cryptography.hazmat.primitives.interfaces import (
DSAParametersWithNumbers, DSAPrivateKeyWithNumbers, DSAPublicKeyWithNumbers
)
@utils.register_interface(interfaces.AsymmetricVerificationContext)
class _DSAVerificationContext(object):
def __init__(self, backend, public_key, signature, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
self._dsa_cdata = self._backend._ffi.gc(self._public_key._dsa_cdata,
self._backend._lib.DSA_free)
data_to_verify = self._hash_ctx.finalize()
# The first parameter passed to DSA_verify is unused by OpenSSL but
# must be an integer.
res = self._backend._lib.DSA_verify(
0, data_to_verify, len(data_to_verify), self._signature,
len(self._signature), self._public_key._dsa_cdata)
if res != 1:
errors = self._backend._consume_errors()
assert errors
if res == -1:
assert errors[0].lib == self._backend._lib.ERR_LIB_ASN1
raise InvalidSignature
@utils.register_interface(interfaces.AsymmetricSignatureContext)
class _DSASignatureContext(object):
def __init__(self, backend, private_key, algorithm):
self._backend = backend
self._private_key = private_key
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
data_to_sign = self._hash_ctx.finalize()
sig_buf_len = self._backend._lib.DSA_size(self._private_key._dsa_cdata)
sig_buf = self._backend._ffi.new("unsigned char[]", sig_buf_len)
buflen = self._backend._ffi.new("unsigned int *")
# The first parameter passed to DSA_sign is unused by OpenSSL but
# must be an integer.
res = self._backend._lib.DSA_sign(
0, data_to_sign, len(data_to_sign), sig_buf,
buflen, self._private_key._dsa_cdata)
assert res == 1
assert buflen[0]
return self._backend._ffi.buffer(sig_buf)[:buflen[0]]
@utils.register_interface(DSAParametersWithNumbers)
class _DSAParameters(object):
def __init__(self, backend, dsa_cdata):
self._backend = backend
self._dsa_cdata = dsa_cdata
def parameter_numbers(self):
return dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(self._dsa_cdata.p),
q=self._backend._bn_to_int(self._dsa_cdata.q),
g=self._backend._bn_to_int(self._dsa_cdata.g)
)
def generate_private_key(self):
return self._backend.generate_dsa_private_key(self)
@utils.register_interface(DSAPrivateKeyWithNumbers)
class _DSAPrivateKey(object):
def __init__(self, backend, dsa_cdata):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._key_size = self._backend._lib.BN_num_bits(self._dsa_cdata.p)
@property
def key_size(self):
return self._key_size
def signer(self, algorithm):
return _DSASignatureContext(self._backend, self, algorithm)
def private_numbers(self):
return dsa.DSAPrivateNumbers(
public_numbers=dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(self._dsa_cdata.p),
q=self._backend._bn_to_int(self._dsa_cdata.q),
g=self._backend._bn_to_int(self._dsa_cdata.g)
),
y=self._backend._bn_to_int(self._dsa_cdata.pub_key)
),
x=self._backend._bn_to_int(self._dsa_cdata.priv_key)
)
def public_key(self):
dsa_cdata = self._backend._lib.DSA_new()
assert dsa_cdata != self._backend._ffi.NULL
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
dsa_cdata.p = self._backend._lib.BN_dup(self._dsa_cdata.p)
dsa_cdata.q = self._backend._lib.BN_dup(self._dsa_cdata.q)
dsa_cdata.g = self._backend._lib.BN_dup(self._dsa_cdata.g)
dsa_cdata.pub_key = self._backend._lib.BN_dup(self._dsa_cdata.pub_key)
return _DSAPublicKey(self._backend, dsa_cdata)
def parameters(self):
dsa_cdata = self._backend._lib.DSA_new()
assert dsa_cdata != self._backend._ffi.NULL
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
dsa_cdata.p = self._backend._lib.BN_dup(self._dsa_cdata.p)
dsa_cdata.q = self._backend._lib.BN_dup(self._dsa_cdata.q)
dsa_cdata.g = self._backend._lib.BN_dup(self._dsa_cdata.g)
return _DSAParameters(self._backend, dsa_cdata)
@utils.register_interface(DSAPublicKeyWithNumbers)
class _DSAPublicKey(object):
def __init__(self, backend, dsa_cdata):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._key_size = self._backend._lib.BN_num_bits(self._dsa_cdata.p)
@property
def key_size(self):
return self._key_size
def verifier(self, signature, algorithm):
return _DSAVerificationContext(
self._backend, self, signature, algorithm
)
def public_numbers(self):
return dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(self._dsa_cdata.p),
q=self._backend._bn_to_int(self._dsa_cdata.q),
g=self._backend._bn_to_int(self._dsa_cdata.g)
),
y=self._backend._bn_to_int(self._dsa_cdata.pub_key)
)
def parameters(self):
dsa_cdata = self._backend._lib.DSA_new()
assert dsa_cdata != self._backend._ffi.NULL
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
dsa_cdata.p = self._backend._lib.BN_dup(self._dsa_cdata.p)
dsa_cdata.q = self._backend._lib.BN_dup(self._dsa_cdata.q)
dsa_cdata.g = self._backend._lib.BN_dup(self._dsa_cdata.g)
return _DSAParameters(self._backend, dsa_cdata)

View file

@ -0,0 +1,191 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import six
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import hashes, interfaces
from cryptography.hazmat.primitives.asymmetric import ec
def _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend):
_lib = backend._lib
_ffi = backend._ffi
digest_len = len(digest)
group = _lib.EC_KEY_get0_group(ec_key_cdata)
bn_ctx = _lib.BN_CTX_new()
assert bn_ctx != _ffi.NULL
bn_ctx = _ffi.gc(bn_ctx, _lib.BN_CTX_free)
order = _lib.BN_CTX_get(bn_ctx)
assert order != _ffi.NULL
res = _lib.EC_GROUP_get_order(group, order, bn_ctx)
assert res == 1
order_bits = _lib.BN_num_bits(order)
if 8 * digest_len > order_bits:
digest_len = (order_bits + 7) // 8
digest = digest[:digest_len]
if 8 * digest_len > order_bits:
rshift = 8 - (order_bits & 0x7)
assert rshift > 0 and rshift < 8
mask = 0xFF >> rshift << rshift
# Set the bottom rshift bits to 0
digest = digest[:-1] + six.int2byte(six.indexbytes(digest, -1) & mask)
return digest
@utils.register_interface(interfaces.AsymmetricSignatureContext)
class _ECDSASignatureContext(object):
def __init__(self, backend, private_key, algorithm):
self._backend = backend
self._private_key = private_key
self._digest = hashes.Hash(algorithm, backend)
def update(self, data):
self._digest.update(data)
def finalize(self):
ec_key = self._private_key._ec_key
digest = self._digest.finalize()
digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)
max_size = self._backend._lib.ECDSA_size(ec_key)
assert max_size > 0
sigbuf = self._backend._ffi.new("char[]", max_size)
siglen_ptr = self._backend._ffi.new("unsigned int[]", 1)
res = self._backend._lib.ECDSA_sign(
0,
digest,
len(digest),
sigbuf,
siglen_ptr,
ec_key
)
assert res == 1
return self._backend._ffi.buffer(sigbuf)[:siglen_ptr[0]]
@utils.register_interface(interfaces.AsymmetricVerificationContext)
class _ECDSAVerificationContext(object):
def __init__(self, backend, public_key, signature, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._digest = hashes.Hash(algorithm, backend)
def update(self, data):
self._digest.update(data)
def verify(self):
ec_key = self._public_key._ec_key
digest = self._digest.finalize()
digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)
res = self._backend._lib.ECDSA_verify(
0,
digest,
len(digest),
self._signature,
len(self._signature),
ec_key
)
if res != 1:
self._backend._consume_errors()
raise InvalidSignature
return True
@utils.register_interface(interfaces.EllipticCurvePrivateKey)
class _EllipticCurvePrivateKey(object):
def __init__(self, backend, ec_key_cdata, curve):
self._backend = backend
self._ec_key = ec_key_cdata
self._curve = curve
@property
def curve(self):
return self._curve
def signer(self, signature_algorithm):
if isinstance(signature_algorithm, ec.ECDSA):
return _ECDSASignatureContext(
self._backend, self, signature_algorithm.algorithm
)
else:
raise UnsupportedAlgorithm(
"Unsupported elliptic curve signature algorithm.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def public_key(self):
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
assert group != self._backend._ffi.NULL
curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)
public_ec_key = self._backend._lib.EC_KEY_new_by_curve_name(curve_nid)
assert public_ec_key != self._backend._ffi.NULL
public_ec_key = self._backend._ffi.gc(
public_ec_key, self._backend._lib.EC_KEY_free
)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
assert point != self._backend._ffi.NULL
res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
assert res == 1
return _EllipticCurvePublicKey(
self._backend, public_ec_key, self._curve
)
@utils.register_interface(interfaces.EllipticCurvePublicKey)
class _EllipticCurvePublicKey(object):
def __init__(self, backend, ec_key_cdata, curve):
self._backend = backend
self._ec_key = ec_key_cdata
self._curve = curve
@property
def curve(self):
return self._curve
def verifier(self, signature, signature_algorithm):
if isinstance(signature_algorithm, ec.ECDSA):
return _ECDSAVerificationContext(
self._backend, self, signature, signature_algorithm.algorithm
)
else:
raise UnsupportedAlgorithm(
"Unsupported elliptic curve signature algorithm.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)

View file

@ -0,0 +1,69 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import interfaces
@utils.register_interface(interfaces.HashContext)
class _HashContext(object):
def __init__(self, backend, algorithm, ctx=None):
self.algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._lib.EVP_MD_CTX_create()
ctx = self._backend._ffi.gc(ctx,
self._backend._lib.EVP_MD_CTX_destroy)
evp_md = self._backend._lib.EVP_get_digestbyname(
algorithm.name.encode("ascii"))
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
res = self._backend._lib.EVP_DigestInit_ex(ctx, evp_md,
self._backend._ffi.NULL)
assert res != 0
self._ctx = ctx
def copy(self):
copied_ctx = self._backend._lib.EVP_MD_CTX_create()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.EVP_MD_CTX_destroy
)
res = self._backend._lib.EVP_MD_CTX_copy_ex(copied_ctx, self._ctx)
assert res != 0
return _HashContext(self._backend, self.algorithm, ctx=copied_ctx)
def update(self, data):
res = self._backend._lib.EVP_DigestUpdate(self._ctx, data, len(data))
assert res != 0
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]",
self._backend._lib.EVP_MAX_MD_SIZE)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.EVP_DigestFinal_ex(self._ctx, buf, outlen)
assert res != 0
assert outlen[0] == self.algorithm.digest_size
res = self._backend._lib.EVP_MD_CTX_cleanup(self._ctx)
assert res == 1
return self._backend._ffi.buffer(buf)[:outlen[0]]

View file

@ -0,0 +1,80 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import interfaces
@utils.register_interface(interfaces.HashContext)
class _HMACContext(object):
def __init__(self, backend, key, algorithm, ctx=None):
self.algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._ffi.new("HMAC_CTX *")
self._backend._lib.HMAC_CTX_init(ctx)
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.HMAC_CTX_cleanup
)
evp_md = self._backend._lib.EVP_get_digestbyname(
algorithm.name.encode('ascii'))
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{0} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
res = self._backend._lib.Cryptography_HMAC_Init_ex(
ctx, key, len(key), evp_md, self._backend._ffi.NULL
)
assert res != 0
self._ctx = ctx
self._key = key
def copy(self):
copied_ctx = self._backend._ffi.new("HMAC_CTX *")
self._backend._lib.HMAC_CTX_init(copied_ctx)
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.HMAC_CTX_cleanup
)
res = self._backend._lib.Cryptography_HMAC_CTX_copy(
copied_ctx, self._ctx
)
assert res != 0
return _HMACContext(
self._backend, self._key, self.algorithm, ctx=copied_ctx
)
def update(self, data):
res = self._backend._lib.Cryptography_HMAC_Update(
self._ctx, data, len(data)
)
assert res != 0
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]",
self._backend._lib.EVP_MAX_MD_SIZE)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.Cryptography_HMAC_Final(
self._ctx, buf, outlen
)
assert res != 0
assert outlen[0] == self.algorithm.digest_size
self._backend._lib.HMAC_CTX_cleanup(self._ctx)
return self._backend._ffi.buffer(buf)[:outlen[0]]

View file

@ -0,0 +1,603 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import math
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import hashes, interfaces
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives.asymmetric.padding import (
MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.interfaces import (
RSAPrivateKeyWithNumbers, RSAPublicKeyWithNumbers
)
def _get_rsa_pss_salt_length(pss, key_size, digest_size):
if pss._mgf._salt_length is not None:
salt = pss._mgf._salt_length
else:
salt = pss._salt_length
if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
# bit length - 1 per RFC 3447
emlen = int(math.ceil((key_size - 1) / 8.0))
salt_length = emlen - digest_size - 2
assert salt_length >= 0
return salt_length
else:
return salt
def _enc_dec_rsa(backend, key, data, padding):
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, OAEP):
padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
if not isinstance(padding._mgf._algorithm, hashes.SHA1):
raise UnsupportedAlgorithm(
"This backend supports only SHA1 inside MGF1 when "
"using OAEP.",
_Reasons.UNSUPPORTED_HASH
)
if padding._label is not None and padding._label != b"":
raise ValueError("This backend does not support OAEP labels.")
if not isinstance(padding._algorithm, hashes.SHA1):
raise UnsupportedAlgorithm(
"This backend only supports SHA1 when using OAEP.",
_Reasons.UNSUPPORTED_HASH
)
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(
padding.name
),
_Reasons.UNSUPPORTED_PADDING
)
if backend._lib.Cryptography_HAS_PKEY_CTX:
return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum)
else:
return _enc_dec_rsa_098(backend, key, data, padding_enum)
def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum):
if isinstance(key, _RSAPublicKey):
init = backend._lib.EVP_PKEY_encrypt_init
crypt = backend._lib.Cryptography_EVP_PKEY_encrypt
else:
init = backend._lib.EVP_PKEY_decrypt_init
crypt = backend._lib.Cryptography_EVP_PKEY_decrypt
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
key._evp_pkey, backend._ffi.NULL
)
assert pkey_ctx != backend._ffi.NULL
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init(pkey_ctx)
assert res == 1
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, padding_enum)
assert res > 0
buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
assert buf_size > 0
outlen = backend._ffi.new("size_t *", buf_size)
buf = backend._ffi.new("char[]", buf_size)
res = crypt(pkey_ctx, buf, outlen, data, len(data))
if res <= 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:outlen[0]]
def _enc_dec_rsa_098(backend, key, data, padding_enum):
if isinstance(key, _RSAPublicKey):
crypt = backend._lib.RSA_public_encrypt
else:
crypt = backend._lib.RSA_private_decrypt
key_size = backend._lib.RSA_size(key._rsa_cdata)
assert key_size > 0
buf = backend._ffi.new("unsigned char[]", key_size)
res = crypt(len(data), data, buf, key._rsa_cdata, padding_enum)
if res < 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:res]
def _handle_rsa_enc_dec_error(backend, key):
errors = backend._consume_errors()
assert errors
assert errors[0].lib == backend._lib.ERR_LIB_RSA
if isinstance(key, _RSAPublicKey):
assert (errors[0].reason ==
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
raise ValueError(
"Data too long for key size. Encrypt less data or use a "
"larger key size."
)
else:
assert (
errors[0].reason == backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_01 or
errors[0].reason == backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_02
)
raise ValueError("Decryption failed.")
@utils.register_interface(interfaces.AsymmetricSignatureContext)
class _RSASignatureContext(object):
def __init__(self, backend, private_key, padding, algorithm):
self._backend = backend
self._private_key = private_key
if not isinstance(padding, interfaces.AsymmetricPadding):
raise TypeError(
"Expected provider of interfaces.AsymmetricPadding.")
self._pkey_size = self._backend._lib.EVP_PKEY_size(
self._private_key._evp_pkey
)
if isinstance(padding, PKCS1v15):
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._finalize_method = self._finalize_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
else:
self._finalize_method = self._finalize_pkcs1
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
assert self._pkey_size > 0
if self._pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError("Digest too large for key size. Use a larger "
"key.")
if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
raise UnsupportedAlgorithm(
"When OpenSSL is older than 1.0.1 then only SHA1 is "
"supported with MGF1.",
_Reasons.UNSUPPORTED_HASH
)
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._finalize_method = self._finalize_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
else:
self._finalize_method = self._finalize_pss
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
evp_md = self._backend._lib.EVP_get_digestbyname(
self._algorithm.name.encode("ascii"))
assert evp_md != self._backend._ffi.NULL
return self._finalize_method(evp_md)
def _finalize_pkey_ctx(self, evp_md):
pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
self._private_key._evp_pkey, self._backend._ffi.NULL
)
assert pkey_ctx != self._backend._ffi.NULL
pkey_ctx = self._backend._ffi.gc(pkey_ctx,
self._backend._lib.EVP_PKEY_CTX_free)
res = self._backend._lib.EVP_PKEY_sign_init(pkey_ctx)
assert res == 1
res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
assert res > 0
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, self._padding_enum)
assert res > 0
if isinstance(self._padding, PSS):
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
self._padding,
self._private_key.key_size,
self._hash_ctx.algorithm.digest_size
)
)
assert res > 0
if self._backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = self._backend._lib.EVP_get_digestbyname(
self._padding._mgf._algorithm.name.encode("ascii"))
assert mgf1_md != self._backend._ffi.NULL
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
assert res > 0
data_to_sign = self._hash_ctx.finalize()
buflen = self._backend._ffi.new("size_t *")
res = self._backend._lib.EVP_PKEY_sign(
pkey_ctx,
self._backend._ffi.NULL,
buflen,
data_to_sign,
len(data_to_sign)
)
assert res == 1
buf = self._backend._ffi.new("unsigned char[]", buflen[0])
res = self._backend._lib.EVP_PKEY_sign(
pkey_ctx, buf, buflen, data_to_sign, len(data_to_sign))
if res != 1:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
reason = None
if (errors[0].reason ==
self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
reason = ("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
elif (errors[0].reason ==
self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY):
reason = "Digest too large for key size. Use a larger key."
assert reason is not None
raise ValueError(reason)
return self._backend._ffi.buffer(buf)[:]
def _finalize_pkcs1(self, evp_md):
if self._hash_ctx._ctx is None:
raise AlreadyFinalized("Context has already been finalized.")
sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
sig_len = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.EVP_SignFinal(
self._hash_ctx._ctx._ctx,
sig_buf,
sig_len,
self._private_key._evp_pkey
)
self._hash_ctx.finalize()
if res == 0:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
assert (errors[0].reason ==
self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
raise ValueError("Digest too large for key size. Use a larger "
"key.")
return self._backend._ffi.buffer(sig_buf)[:sig_len[0]]
def _finalize_pss(self, evp_md):
data_to_sign = self._hash_ctx.finalize()
padded = self._backend._ffi.new("unsigned char[]", self._pkey_size)
res = self._backend._lib.RSA_padding_add_PKCS1_PSS(
self._private_key._rsa_cdata,
padded,
data_to_sign,
evp_md,
_get_rsa_pss_salt_length(
self._padding,
self._private_key.key_size,
len(data_to_sign)
)
)
if res != 1:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
assert (errors[0].reason ==
self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
raise ValueError("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
sig_len = self._backend._lib.RSA_private_encrypt(
self._pkey_size,
padded,
sig_buf,
self._private_key._rsa_cdata,
self._backend._lib.RSA_NO_PADDING
)
assert sig_len != -1
return self._backend._ffi.buffer(sig_buf)[:sig_len]
@utils.register_interface(interfaces.AsymmetricVerificationContext)
class _RSAVerificationContext(object):
def __init__(self, backend, public_key, signature, padding, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
if not isinstance(padding, interfaces.AsymmetricPadding):
raise TypeError(
"Expected provider of interfaces.AsymmetricPadding.")
self._pkey_size = self._backend._lib.EVP_PKEY_size(
self._public_key._evp_pkey
)
if isinstance(padding, PKCS1v15):
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._verify_method = self._verify_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
else:
self._verify_method = self._verify_pkcs1
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
assert self._pkey_size > 0
if self._pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError(
"Digest too large for key size. Check that you have the "
"correct key and digest algorithm."
)
if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
raise UnsupportedAlgorithm(
"When OpenSSL is older than 1.0.1 then only SHA1 is "
"supported with MGF1.",
_Reasons.UNSUPPORTED_HASH
)
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._verify_method = self._verify_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
else:
self._verify_method = self._verify_pss
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
evp_md = self._backend._lib.EVP_get_digestbyname(
self._algorithm.name.encode("ascii"))
assert evp_md != self._backend._ffi.NULL
self._verify_method(evp_md)
def _verify_pkey_ctx(self, evp_md):
pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
self._public_key._evp_pkey, self._backend._ffi.NULL
)
assert pkey_ctx != self._backend._ffi.NULL
pkey_ctx = self._backend._ffi.gc(pkey_ctx,
self._backend._lib.EVP_PKEY_CTX_free)
res = self._backend._lib.EVP_PKEY_verify_init(pkey_ctx)
assert res == 1
res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
assert res > 0
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, self._padding_enum)
assert res > 0
if isinstance(self._padding, PSS):
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
self._padding,
self._public_key.key_size,
self._hash_ctx.algorithm.digest_size
)
)
assert res > 0
if self._backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = self._backend._lib.EVP_get_digestbyname(
self._padding._mgf._algorithm.name.encode("ascii"))
assert mgf1_md != self._backend._ffi.NULL
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
assert res > 0
data_to_verify = self._hash_ctx.finalize()
res = self._backend._lib.EVP_PKEY_verify(
pkey_ctx,
self._signature,
len(self._signature),
data_to_verify,
len(data_to_verify)
)
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
assert res >= 0
if res == 0:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
def _verify_pkcs1(self, evp_md):
if self._hash_ctx._ctx is None:
raise AlreadyFinalized("Context has already been finalized.")
res = self._backend._lib.EVP_VerifyFinal(
self._hash_ctx._ctx._ctx,
self._signature,
len(self._signature),
self._public_key._evp_pkey
)
self._hash_ctx.finalize()
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
assert res >= 0
if res == 0:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
def _verify_pss(self, evp_md):
buf = self._backend._ffi.new("unsigned char[]", self._pkey_size)
res = self._backend._lib.RSA_public_decrypt(
len(self._signature),
self._signature,
buf,
self._public_key._rsa_cdata,
self._backend._lib.RSA_NO_PADDING
)
if res != self._pkey_size:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
data_to_verify = self._hash_ctx.finalize()
res = self._backend._lib.RSA_verify_PKCS1_PSS(
self._public_key._rsa_cdata,
data_to_verify,
evp_md,
buf,
_get_rsa_pss_salt_length(
self._padding,
self._public_key.key_size,
len(data_to_verify)
)
)
if res != 1:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
@utils.register_interface(RSAPrivateKeyWithNumbers)
class _RSAPrivateKey(object):
def __init__(self, backend, rsa_cdata):
self._backend = backend
self._rsa_cdata = rsa_cdata
evp_pkey = self._backend._lib.EVP_PKEY_new()
assert evp_pkey != self._backend._ffi.NULL
evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
res = self._backend._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
assert res == 1
self._evp_pkey = evp_pkey
self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)
@property
def key_size(self):
return self._key_size
def signer(self, padding, algorithm):
return _RSASignatureContext(self._backend, self, padding, algorithm)
def decrypt(self, ciphertext, padding):
key_size_bytes = int(math.ceil(self.key_size / 8.0))
if key_size_bytes != len(ciphertext):
raise ValueError("Ciphertext length must be equal to key size.")
return _enc_dec_rsa(self._backend, self, ciphertext, padding)
def public_key(self):
ctx = self._backend._lib.RSA_new()
assert ctx != self._backend._ffi.NULL
ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
ctx.e = self._backend._lib.BN_dup(self._rsa_cdata.e)
ctx.n = self._backend._lib.BN_dup(self._rsa_cdata.n)
res = self._backend._lib.RSA_blinding_on(ctx, self._backend._ffi.NULL)
assert res == 1
return _RSAPublicKey(self._backend, ctx)
def private_numbers(self):
return rsa.RSAPrivateNumbers(
p=self._backend._bn_to_int(self._rsa_cdata.p),
q=self._backend._bn_to_int(self._rsa_cdata.q),
d=self._backend._bn_to_int(self._rsa_cdata.d),
dmp1=self._backend._bn_to_int(self._rsa_cdata.dmp1),
dmq1=self._backend._bn_to_int(self._rsa_cdata.dmq1),
iqmp=self._backend._bn_to_int(self._rsa_cdata.iqmp),
public_numbers=rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(self._rsa_cdata.e),
n=self._backend._bn_to_int(self._rsa_cdata.n),
)
)
@utils.register_interface(RSAPublicKeyWithNumbers)
class _RSAPublicKey(object):
def __init__(self, backend, rsa_cdata):
self._backend = backend
self._rsa_cdata = rsa_cdata
evp_pkey = self._backend._lib.EVP_PKEY_new()
assert evp_pkey != self._backend._ffi.NULL
evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
res = self._backend._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
assert res == 1
self._evp_pkey = evp_pkey
self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)
@property
def key_size(self):
return self._key_size
def verifier(self, signature, padding, algorithm):
return _RSAVerificationContext(
self._backend, self, signature, padding, algorithm
)
def encrypt(self, plaintext, padding):
return _enc_dec_rsa(self._backend, self, plaintext, padding)
def public_numbers(self):
return rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(self._rsa_cdata.e),
n=self._backend._bn_to_int(self._rsa_cdata.n),
)