440 lines
13 KiB
Python
440 lines
13 KiB
Python
|
#
|
||
|
# The Python Imaging Library.
|
||
|
# $Id$
|
||
|
#
|
||
|
# standard image operations
|
||
|
#
|
||
|
# History:
|
||
|
# 2001-10-20 fl Created
|
||
|
# 2001-10-23 fl Added autocontrast operator
|
||
|
# 2001-12-18 fl Added Kevin's fit operator
|
||
|
# 2004-03-14 fl Fixed potential division by zero in equalize
|
||
|
# 2005-05-05 fl Fixed equalize for low number of values
|
||
|
#
|
||
|
# Copyright (c) 2001-2004 by Secret Labs AB
|
||
|
# Copyright (c) 2001-2004 by Fredrik Lundh
|
||
|
#
|
||
|
# See the README file for information on usage and redistribution.
|
||
|
#
|
||
|
|
||
|
import Image
|
||
|
import operator
|
||
|
|
||
|
##
|
||
|
# (New in 1.1.3) The <b>ImageOps</b> module contains a number of
|
||
|
# 'ready-made' image processing operations. This module is somewhat
|
||
|
# experimental, and most operators only work on L and RGB images.
|
||
|
#
|
||
|
# @since 1.1.3
|
||
|
##
|
||
|
|
||
|
#
|
||
|
# helpers
|
||
|
|
||
|
def _border(border):
|
||
|
if type(border) is type(()):
|
||
|
if len(border) == 2:
|
||
|
left, top = right, bottom = border
|
||
|
elif len(border) == 4:
|
||
|
left, top, right, bottom = border
|
||
|
else:
|
||
|
left = top = right = bottom = border
|
||
|
return left, top, right, bottom
|
||
|
|
||
|
def _color(color, mode):
|
||
|
if Image.isStringType(color):
|
||
|
import ImageColor
|
||
|
color = ImageColor.getcolor(color, mode)
|
||
|
return color
|
||
|
|
||
|
def _lut(image, lut):
|
||
|
if image.mode == "P":
|
||
|
# FIXME: apply to lookup table, not image data
|
||
|
raise NotImplementedError("mode P support coming soon")
|
||
|
elif image.mode in ("L", "RGB"):
|
||
|
if image.mode == "RGB" and len(lut) == 256:
|
||
|
lut = lut + lut + lut
|
||
|
return image.point(lut)
|
||
|
else:
|
||
|
raise IOError, "not supported for this image mode"
|
||
|
|
||
|
#
|
||
|
# actions
|
||
|
|
||
|
##
|
||
|
# Maximize (normalize) image contrast. This function calculates a
|
||
|
# histogram of the input image, removes <i>cutoff</i> percent of the
|
||
|
# lightest and darkest pixels from the histogram, and remaps the image
|
||
|
# so that the darkest pixel becomes black (0), and the lightest
|
||
|
# becomes white (255).
|
||
|
#
|
||
|
# @param image The image to process.
|
||
|
# @param cutoff How many percent to cut off from the histogram.
|
||
|
# @param ignore The background pixel value (use None for no background).
|
||
|
# @return An image.
|
||
|
|
||
|
def autocontrast(image, cutoff=0, ignore=None):
|
||
|
"Maximize image contrast, based on histogram"
|
||
|
histogram = image.histogram()
|
||
|
lut = []
|
||
|
for layer in range(0, len(histogram), 256):
|
||
|
h = histogram[layer:layer+256]
|
||
|
if ignore is not None:
|
||
|
# get rid of outliers
|
||
|
try:
|
||
|
h[ignore] = 0
|
||
|
except TypeError:
|
||
|
# assume sequence
|
||
|
for ix in ignore:
|
||
|
h[ix] = 0
|
||
|
if cutoff:
|
||
|
# cut off pixels from both ends of the histogram
|
||
|
# get number of pixels
|
||
|
n = 0
|
||
|
for ix in range(256):
|
||
|
n = n + h[ix]
|
||
|
# remove cutoff% pixels from the low end
|
||
|
cut = n * cutoff / 100
|
||
|
for lo in range(256):
|
||
|
if cut > h[lo]:
|
||
|
cut = cut - h[lo]
|
||
|
h[lo] = 0
|
||
|
else:
|
||
|
h[lo] = h[lo] - cut
|
||
|
cut = 0
|
||
|
if cut <= 0:
|
||
|
break
|
||
|
# remove cutoff% samples from the hi end
|
||
|
cut = n * cutoff / 100
|
||
|
for hi in range(255, -1, -1):
|
||
|
if cut > h[hi]:
|
||
|
cut = cut - h[hi]
|
||
|
h[hi] = 0
|
||
|
else:
|
||
|
h[hi] = h[hi] - cut
|
||
|
cut = 0
|
||
|
if cut <= 0:
|
||
|
break
|
||
|
# find lowest/highest samples after preprocessing
|
||
|
for lo in range(256):
|
||
|
if h[lo]:
|
||
|
break
|
||
|
for hi in range(255, -1, -1):
|
||
|
if h[hi]:
|
||
|
break
|
||
|
if hi <= lo:
|
||
|
# don't bother
|
||
|
lut.extend(range(256))
|
||
|
else:
|
||
|
scale = 255.0 / (hi - lo)
|
||
|
offset = -lo * scale
|
||
|
for ix in range(256):
|
||
|
ix = int(ix * scale + offset)
|
||
|
if ix < 0:
|
||
|
ix = 0
|
||
|
elif ix > 255:
|
||
|
ix = 255
|
||
|
lut.append(ix)
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
##
|
||
|
# Colorize grayscale image. The <i>black</i> and <i>white</i>
|
||
|
# arguments should be RGB tuples; this function calculates a colour
|
||
|
# wedge mapping all black pixels in the source image to the first
|
||
|
# colour, and all white pixels to the second colour.
|
||
|
#
|
||
|
# @param image The image to colourize.
|
||
|
# @param black The colour to use for black input pixels.
|
||
|
# @param white The colour to use for white input pixels.
|
||
|
# @return An image.
|
||
|
|
||
|
def colorize(image, black, white):
|
||
|
"Colorize a grayscale image"
|
||
|
assert image.mode == "L"
|
||
|
black = _color(black, "RGB")
|
||
|
white = _color(white, "RGB")
|
||
|
red = []; green = []; blue = []
|
||
|
for i in range(256):
|
||
|
red.append(black[0]+i*(white[0]-black[0])/255)
|
||
|
green.append(black[1]+i*(white[1]-black[1])/255)
|
||
|
blue.append(black[2]+i*(white[2]-black[2])/255)
|
||
|
image = image.convert("RGB")
|
||
|
return _lut(image, red + green + blue)
|
||
|
|
||
|
##
|
||
|
# Remove border from image. The same amount of pixels are removed
|
||
|
# from all four sides. This function works on all image modes.
|
||
|
#
|
||
|
# @param image The image to crop.
|
||
|
# @param border The number of pixels to remove.
|
||
|
# @return An image.
|
||
|
# @see Image#Image.crop
|
||
|
|
||
|
def crop(image, border=0):
|
||
|
"Crop border off image"
|
||
|
left, top, right, bottom = _border(border)
|
||
|
return image.crop(
|
||
|
(left, top, image.size[0]-right, image.size[1]-bottom)
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Deform the image.
|
||
|
#
|
||
|
# @param image The image to deform.
|
||
|
# @param deformer A deformer object. Any object that implements a
|
||
|
# <b>getmesh</b> method can be used.
|
||
|
# @param resample What resampling filter to use.
|
||
|
# @return An image.
|
||
|
|
||
|
def deform(image, deformer, resample=Image.BILINEAR):
|
||
|
"Deform image using the given deformer"
|
||
|
return image.transform(
|
||
|
image.size, Image.MESH, deformer.getmesh(image), resample
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Equalize the image histogram. This function applies a non-linear
|
||
|
# mapping to the input image, in order to create a uniform
|
||
|
# distribution of grayscale values in the output image.
|
||
|
#
|
||
|
# @param image The image to equalize.
|
||
|
# @param mask An optional mask. If given, only the pixels selected by
|
||
|
# the mask are included in the analysis.
|
||
|
# @return An image.
|
||
|
|
||
|
def equalize(image, mask=None):
|
||
|
"Equalize image histogram"
|
||
|
if image.mode == "P":
|
||
|
image = image.convert("RGB")
|
||
|
h = image.histogram(mask)
|
||
|
lut = []
|
||
|
for b in range(0, len(h), 256):
|
||
|
histo = filter(None, h[b:b+256])
|
||
|
if len(histo) <= 1:
|
||
|
lut.extend(range(256))
|
||
|
else:
|
||
|
step = (reduce(operator.add, histo) - histo[-1]) / 255
|
||
|
if not step:
|
||
|
lut.extend(range(256))
|
||
|
else:
|
||
|
n = step / 2
|
||
|
for i in range(256):
|
||
|
lut.append(n / step)
|
||
|
n = n + h[i+b]
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
##
|
||
|
# Add border to the image
|
||
|
#
|
||
|
# @param image The image to expand.
|
||
|
# @param border Border width, in pixels.
|
||
|
# @param fill Pixel fill value (a colour value). Default is 0 (black).
|
||
|
# @return An image.
|
||
|
|
||
|
def expand(image, border=0, fill=0):
|
||
|
"Add border to image"
|
||
|
left, top, right, bottom = _border(border)
|
||
|
width = left + image.size[0] + right
|
||
|
height = top + image.size[1] + bottom
|
||
|
out = Image.new(image.mode, (width, height), _color(fill, image.mode))
|
||
|
out.paste(image, (left, top))
|
||
|
return out
|
||
|
|
||
|
##
|
||
|
# Returns a sized and cropped version of the image, cropped to the
|
||
|
# requested aspect ratio and size.
|
||
|
# <p>
|
||
|
# The <b>fit</b> function was contributed by Kevin Cazabon.
|
||
|
#
|
||
|
# @param size The requested output size in pixels, given as a
|
||
|
# (width, height) tuple.
|
||
|
# @param method What resampling method to use. Default is Image.NEAREST.
|
||
|
# @param bleed Remove a border around the outside of the image (from all
|
||
|
# four edges. The value is a decimal percentage (use 0.01 for one
|
||
|
# percent). The default value is 0 (no border).
|
||
|
# @param centering Control the cropping position. Use (0.5, 0.5) for
|
||
|
# center cropping (e.g. if cropping the width, take 50% off of the
|
||
|
# left side, and therefore 50% off the right side). (0.0, 0.0)
|
||
|
# will crop from the top left corner (i.e. if cropping the width,
|
||
|
# take all of the crop off of the right side, and if cropping the
|
||
|
# height, take all of it off the bottom). (1.0, 0.0) will crop
|
||
|
# from the bottom left corner, etc. (i.e. if cropping the width,
|
||
|
# take all of the crop off the left side, and if cropping the height
|
||
|
# take none from the top, and therefore all off the bottom).
|
||
|
# @return An image.
|
||
|
|
||
|
def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
|
||
|
"""
|
||
|
This method returns a sized and cropped version of the image,
|
||
|
cropped to the aspect ratio and size that you request.
|
||
|
"""
|
||
|
|
||
|
# by Kevin Cazabon, Feb 17/2000
|
||
|
# kevin@cazabon.com
|
||
|
# http://www.cazabon.com
|
||
|
|
||
|
# ensure inputs are valid
|
||
|
if type(centering) != type([]):
|
||
|
centering = [centering[0], centering[1]]
|
||
|
|
||
|
if centering[0] > 1.0 or centering[0] < 0.0:
|
||
|
centering [0] = 0.50
|
||
|
if centering[1] > 1.0 or centering[1] < 0.0:
|
||
|
centering[1] = 0.50
|
||
|
|
||
|
if bleed > 0.49999 or bleed < 0.0:
|
||
|
bleed = 0.0
|
||
|
|
||
|
# calculate the area to use for resizing and cropping, subtracting
|
||
|
# the 'bleed' around the edges
|
||
|
|
||
|
# number of pixels to trim off on Top and Bottom, Left and Right
|
||
|
bleedPixels = (
|
||
|
int((float(bleed) * float(image.size[0])) + 0.5),
|
||
|
int((float(bleed) * float(image.size[1])) + 0.5)
|
||
|
)
|
||
|
|
||
|
liveArea = (
|
||
|
bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1,
|
||
|
image.size[1] - bleedPixels[1] - 1
|
||
|
)
|
||
|
|
||
|
liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1])
|
||
|
|
||
|
# calculate the aspect ratio of the liveArea
|
||
|
liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1])
|
||
|
|
||
|
# calculate the aspect ratio of the output image
|
||
|
aspectRatio = float(size[0]) / float(size[1])
|
||
|
|
||
|
# figure out if the sides or top/bottom will be cropped off
|
||
|
if liveAreaAspectRatio >= aspectRatio:
|
||
|
# liveArea is wider than what's needed, crop the sides
|
||
|
cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5)
|
||
|
cropHeight = liveSize[1]
|
||
|
else:
|
||
|
# liveArea is taller than what's needed, crop the top and bottom
|
||
|
cropWidth = liveSize[0]
|
||
|
cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5)
|
||
|
|
||
|
# make the crop
|
||
|
leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0]))
|
||
|
if leftSide < 0:
|
||
|
leftSide = 0
|
||
|
topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1]))
|
||
|
if topSide < 0:
|
||
|
topSide = 0
|
||
|
|
||
|
out = image.crop(
|
||
|
(leftSide, topSide, leftSide + cropWidth, topSide + cropHeight)
|
||
|
)
|
||
|
|
||
|
# resize the image and return it
|
||
|
return out.resize(size, method)
|
||
|
|
||
|
##
|
||
|
# Flip the image vertically (top to bottom).
|
||
|
#
|
||
|
# @param image The image to flip.
|
||
|
# @return An image.
|
||
|
|
||
|
def flip(image):
|
||
|
"Flip image vertically"
|
||
|
return image.transpose(Image.FLIP_TOP_BOTTOM)
|
||
|
|
||
|
##
|
||
|
# Convert the image to grayscale.
|
||
|
#
|
||
|
# @param image The image to convert.
|
||
|
# @return An image.
|
||
|
|
||
|
def grayscale(image):
|
||
|
"Convert to grayscale"
|
||
|
return image.convert("L")
|
||
|
|
||
|
##
|
||
|
# Invert (negate) the image.
|
||
|
#
|
||
|
# @param image The image to invert.
|
||
|
# @return An image.
|
||
|
|
||
|
def invert(image):
|
||
|
"Invert image (negate)"
|
||
|
lut = []
|
||
|
for i in range(256):
|
||
|
lut.append(255-i)
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
##
|
||
|
# Flip image horizontally (left to right).
|
||
|
#
|
||
|
# @param image The image to mirror.
|
||
|
# @return An image.
|
||
|
|
||
|
def mirror(image):
|
||
|
"Flip image horizontally"
|
||
|
return image.transpose(Image.FLIP_LEFT_RIGHT)
|
||
|
|
||
|
##
|
||
|
# Reduce the number of bits for each colour channel.
|
||
|
#
|
||
|
# @param image The image to posterize.
|
||
|
# @param bits The number of bits to keep for each channel (1-8).
|
||
|
# @return An image.
|
||
|
|
||
|
def posterize(image, bits):
|
||
|
"Reduce the number of bits per color channel"
|
||
|
lut = []
|
||
|
mask = ~(2**(8-bits)-1)
|
||
|
for i in range(256):
|
||
|
lut.append(i & mask)
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
##
|
||
|
# Invert all pixel values above a threshold.
|
||
|
#
|
||
|
# @param image The image to posterize.
|
||
|
# @param threshold All pixels above this greyscale level are inverted.
|
||
|
# @return An image.
|
||
|
|
||
|
def solarize(image, threshold=128):
|
||
|
"Invert all values above threshold"
|
||
|
lut = []
|
||
|
for i in range(256):
|
||
|
if i < threshold:
|
||
|
lut.append(i)
|
||
|
else:
|
||
|
lut.append(255-i)
|
||
|
return _lut(image, lut)
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# PIL USM components, from Kevin Cazabon.
|
||
|
|
||
|
def gaussian_blur(im, radius=None):
|
||
|
""" PIL_usm.gblur(im, [radius])"""
|
||
|
|
||
|
if radius is None:
|
||
|
radius = 5.0
|
||
|
|
||
|
im.load()
|
||
|
|
||
|
return im.im.gaussian_blur(radius)
|
||
|
|
||
|
gblur = gaussian_blur
|
||
|
|
||
|
def unsharp_mask(im, radius=None, percent=None, threshold=None):
|
||
|
""" PIL_usm.usm(im, [radius, percent, threshold])"""
|
||
|
|
||
|
if radius is None:
|
||
|
radius = 5.0
|
||
|
if percent is None:
|
||
|
percent = 150
|
||
|
if threshold is None:
|
||
|
threshold = 3
|
||
|
|
||
|
im.load()
|
||
|
|
||
|
return im.im.unsharp_mask(radius, percent, threshold)
|
||
|
|
||
|
usm = unsharp_mask
|