dd-re/recommendation_engine.py

560 lines
26 KiB
Python

'''
Recommendation Engine ver 1
30 Nov 2018, 0x2620
'''
from collections import defaultdict
import json
import logging
import os
import random
import time
import copy
import ox
from utils import run_async
logger = logging.getLogger(__name__)
verbose = True
class Engine:
_pandora = None
def __init__(self, path, **kwargs):
self.path = path
self.pandora_args = dict(
url=kwargs.get('pandora', 'http://pandora.dmp/api/'),
username=kwargs.get('username', 'dd.re'),
password=kwargs.get('password', 'dd.re')
)
filename = os.path.join(self.path, 'playlists.json')
if os.path.exists(filename):
with open(filename) as f:
self.playlists = json.load(f)
# ## the following is for testing purpose.
# for playlist in self.playlists:
# for clip in playlist["clips"]:
# clip["pass"] = bool(random.getrandbits(1))
else:
self.playlists = []
filename = os.path.join(self.path, 'state.json')
if os.path.exists(filename):
with open(filename) as f:
self.state = json.load(f)
else:
self.state = {
'channels': {
'globalKeywords': {'locked': False, 'value': 8},
'userKeywords': {'locked': False, 'value': 8}
},
'globalKeywords': {},
}
if 'gridChange' not in self.state:
self.state['gridChange'] = {
'nextClip': {'locked': False, 'value': 5},
'nextPlaylist': {'locked': False, 'value': 8},
'staySame': {'locked': True, 'value': 3}
}
if 'userKeywordsWeights' not in self.state:
self.state['userKeywordsWeights'] = {
'themeTags': {'locked': False, 'value': 0.3},
'characterTags': {'locked': False, 'value': 0.7},
'random' : {'locked': False, 'value': True}
}
self.update_keywords()
@property
def pandora(self):
while not self._pandora:
try:
self._pandora = Pandora(**self.pandora_args)
except:
logger.error('failed to connect to pandora, retry in 10 seconds')
time.sleep(10)
return self._pandora
def _patch_clips(self, clips):
inpoints = {}
for index, clip in enumerate(clips):
video_id = clip['id'].split('/')[0]
inpoints[video_id] = inpoints.get(video_id, []) + [{
'index': index,
'position': clip['in']
}]
for video_id in inpoints:
for i, inpoint in enumerate(sorted(
inpoints[video_id], key=lambda inpoint: inpoint['position']
)):
if i < len(inpoints[video_id]) - 1:
clips[inpoint['index']]['out'] = inpoints[video_id][i + 1]['position']
else:
clips[inpoint['index']]['out'] = self.pandora.get(video_id, ['duration'])['duration']
return clips
def get_videos(self, user):
## Output is a dictionary of: user keyword scores, list of videos for each grid index (0-15),
## and parameters to be displayed on debug view.
## It implements "next clip" "next playlist" "stay same" grid allocation for the output video, depending on the user log history.
# Update self_playlists to reflect user log history
playlists = self.update_user_playlists(user)
# Get the user keyword scores for debug view
user_keywords = copy.deepcopy(user.get('keywords', {}))
theme_tags = {k.lower():v for k,v in user_keywords.items() if not k.isupper()}
character_tags = {k:v for k,v in user_keywords.items() if k.isupper()}
top_user_keywords = sorted([(k,v) for (k,v) in theme_tags.items()], key=lambda kv: kv[1])[-10:]
top_user_characters = sorted([(k,v) for (k,v) in character_tags.items()], key=lambda kv: kv[1])[-10:]
debug_index_output = defaultdict(list)
# If the most recent event is "login," initialize grid videos.
if user.get('events', [{}])[0].get("event")=="login":
rec = self.get_recommendations(playlists, user)
return {
'user': {
'keywords': user.get('keywords', {})
},
'videos': rec["videos"],
"_debug": {
"top_user_keywords": top_user_keywords,
"top_user_characters": top_user_characters,
"top_user_playlists": rec["top_user_playlists"],
"top_global_playlists": rec["top_global_playlists"]
}
}
channels = {k: v.get('value', 0) for k, v in self.state['channels'].items()}
sliders = {k: v.get('value', 0) for k, v in self.state['globalKeywords'].items()}
grid_change = {k: v.get('value', 0) for k, v in self.state['gridChange'].items()}
grid_events = {}
(nc, np, ns) = (grid_change.get("nextClip"), grid_change.get("nextPlaylist"), grid_change.get("staySame"))
video_num = nc + np + ns
# collect the most recent grid event for each grid index and the grid index of the most recent play event.
# the following requires "index" in play event data (previously unavailable)
play_index = None
for event in user.get('events', []):
if event.get('event') == "grid" and event.get('data').get('index') not in grid_events:
grid_events[event.get('data').get('index')] = event.get('data')
if event.get('event') == "play" and event["data"].get("type") == "video" and not play_index:
play_index = event.get('data').get('index')
if len(grid_events) == video_num and play_index:
break
prev_grid_list = sorted([v for v in grid_events.values()], key=lambda k:k['index'])
# if there were no grid events for all, initialize all grids.
if len(prev_grid_list) < video_num:
rec = self.get_recommendations(playlists, user)
return {
'user': {
'keywords': user.get('keywords', {})
},
'videos': rec["videos"],
"_debug": {
"top_user_keywords": top_user_keywords,
"top_user_characters": top_user_characters,
"top_user_playlists": rec["top_user_playlists"],
"top_global_playlists": rec["top_global_playlists"]
}
}
else:
if play_index is None:
video_indx = list(range(video_num))
random.shuffle(video_indx)
else:
# play index is excluded from the random shuffle and deterministically added to staySame pool.
video_indx = [*range(play_index)]+[*range(play_index+1,video_num)]
random.shuffle(video_indx)
video_indx.append(play_index)
next_clip_index = video_indx[:nc]
next_playlist_index = video_indx[nc:nc+np]
stay_same_index = video_indx[nc+np:]
rec_list = []
# nextClip pool: select next clip except when the playlist has only one clip. skip the clip with "pass":True when selecting the next clip.
for i in next_clip_index:
# add this to deal with the absence of "playlist" data in old grid event or the case where the playlist has been eliminated due to update_user_playlists().
if prev_grid_list[i].get("playlist") not in [playlist["name"] for playlist in playlists]:
next_playlist_index.append(i)
else:
for playlist in playlists:
if playlist.get('name')== prev_grid_list[i].get('playlist'):
unwatched_clips_indx = [j for j in range(len(playlist["clips"])) if not playlist["clips"][j].get("pass")]
if len(playlist["clips"]) == 1:
next_playlist_index.append(i)
else:
next_unwatched_indx = [j for j in unwatched_clips_indx if j > prev_grid_list[i]['playlistPosition']]
if len(next_unwatched_indx) == 0:
if unwatched_clips_indx[0] != prev_grid_list[i]['playlistPosition']:
playlist_pos = unwatched_clips_indx[0]
else:
next_playlist_index.append(i)
break
else:
playlist_pos = next_unwatched_indx[0]
rec_list.append((i, {
'clips': playlist['clips'],
'position': playlist_pos,
'name': playlist['name'],
'tags': playlist['tags']
}))
debug_index_output["next_clip"].append((i,playlist['name']))
#staySame pool
for i in stay_same_index:
# add this to deal with the absence of "playlist" data in old grid event or the case where the playlist has been eliminated due to update_user_playlists().
if prev_grid_list[i].get("playlist") not in [playlist["name"] for playlist in playlists]:
next_playlist_index.append(i)
else:
rec_list.append((i,{}))
debug_index_output["stay_same"].append(i)
# nextPlaylist pool: randomly select playlists (excluding the playlists from the current grid).
vids_exclude = [e.get("playlist") for e in prev_grid_list]
while None in vids_exclude:
vids_exclude.remove(None)
rec = self.get_recommendations(playlists, user, vids_exclude)
rec_list += [(i, rec['videos'][i]) for i in next_playlist_index]
debug_index_output["new_playlist"] = [(i, rec['videos'][i]["name"]) for i in next_playlist_index]
rec_list = sorted(rec_list, key=lambda k:k[0])
videos_ = [e[1] for e in rec_list]
return {
'user': {
'keywords': user.get('keywords', {})
},
'videos': videos_,
"_debug": {
"top_user_keywords": top_user_keywords, # list of (keyword, score)
"top_user_characters": top_user_characters, # list of (keyword, score)
"top_user_playlists": rec["top_user_playlists"], # list of (playlist name, score)
"top_global_playlists": rec["top_global_playlists"], # list of (playlist name, score)
"stay_same_index": debug_index_output["stay_same"], # list of integers
"next_clip_index": debug_index_output["next_clip"], # list of (integer, playlist name)
"new_playlist_index": debug_index_output["new_playlist"] # list of (integer, playlist name)
}
}
def get_recommendations(self, playlists, user, vids_exclude = []):
channels = {k: v.get('value', 0) for k, v in self.state['channels'].items()}
sliders = {k: v.get('value', 0) for k, v in self.state['globalKeywords'].items()}
gridChange = {k: v.get('value', 0) for k, v in self.state['gridChange'].items()}
userKeywordsWeights = {k: v.get('value', 1) for k, v in self.state['userKeywordsWeights'].items()}
# Exclude playlists from the most recent grid
if len(vids_exclude) > 0:
for playlist in playlists:
if playlist["name"] in vids_exclude:
playlists.remove(playlist)
# Generate random weights if random option is chosen in the dashboard:
if userKeywordsWeights['random']:
themeWeights = random.random()
charWeights = 1-themeWeights
else:
themeWeights = userKeywordsWeights['themeTags']
charWeights = userKeywordsWeights['characterTags']
# For each playlist, compute user keyword score by theme and character tags
user_keywords = copy.deepcopy(user.get('keywords', {}))
theme_tags = {k.lower():v for k,v in user_keywords.items() if not k.isupper()}
character_tags = {k:v for k,v in user_keywords.items() if k.isupper()}
# manually modify some of the user keywords to match the playlist tags
theme_tags["god"] = theme_tags.get("god - gods",0)
theme_tags["visionary"] = theme_tags.get("visionary - enlightenment",0)
theme_tags["enlightenment"] = theme_tags.get("visionary - enlightenment",0)
character_tags["FEDOR MIKHAILOVICH SOFRONOV"] = character_tags.get("FYODOR MIKHAILOVICH SOFRONOV",0)
character_tags["SHKABARNYA OLGA SERGEEVNA"] = character_tags.get("OLGA SERGEEVNA SHKABARNYA",0)
character_tags["VICTORIA OLEGOVNA SKITSKAYA"] = character_tags.get("VIKTORIA OLEGOVNA SKITSKAYA",0)
score = {}
for playlist in playlists:
score[playlist['name']] = random.random() * 0.1
for tag in playlist['tags']:
if tag in theme_tags:
score[playlist['name']] += theme_tags[tag] * themeWeights
elif tag in character_tags:
score[playlist['name']] += character_tags[tag] * charWeights
# Select highest scoring playlists
playlists = sorted(
playlists,
key=lambda playlist: -score[playlist['name']]
)
# Record the following for debug view input
top_user_playlists = [(playlist['name'], score[playlist['name']]) for playlist in playlists[:channels['userKeywords']]]
# top_user_playlists = [{
# 'name': playlist['name'],
# 'tags': playlist['tags'],
# 'score': score[playlist['name']],
# } for playlist in playlists[:channels['userKeywords']]]
videos = playlists[:channels['userKeywords']]
playlists = playlists[channels['userKeywords']:]
# For each playlist, compute global keyword score
score = {}
for playlist in playlists:
score[playlist['name']] = random.random()
for tag in [tag for tag in playlist['tags'] if tag in sliders]:
score[playlist['name']] += sliders[tag]
# Select highest scoring playlists
playlists = sorted(
playlists,
key=lambda playlist: -score[playlist['name']]
)
# Record the following for debug view input
top_global_playlists = [(playlist['name'], score[playlist['name']]) for playlist in playlists[:channels['globalKeywords']]]
# top_global_playlists = [{
# 'name': playlist['name'],
# 'tags': playlist['tags'],
# 'score': score[playlist['name']],
# } for playlist in playlists[:channels['globalKeywords']]]
videos += playlists[:16 - channels['userKeywords']]
# Shuffle playlists (randomize layout) and shift clips (randomize start)
random.shuffle(videos)
return {
'videos': [{
'clips': video['clips'],
'position': random.choice([i for i in range(len(video["clips"])) if not video["clips"][i].get("pass")]),
'name': video['name'],
'tags': video['tags'],
} for video in videos],
"top_user_playlists":top_user_playlists,
"top_global_playlists": top_global_playlists
}
def update_user_playlists(self, user, watch_cutoff = 0.9):
# Output: playlists with updated in/out time of clips that have been watched as well as "pass" indicators for the clips that has been watched for more than watch_cutoff.
# Watched is defined as a video being played in full screen.
# "watch_cutoff" parameter: the portion of the clip duration to be determined as watched the whole clip. should be [0,1]
# + check (play, pause) pairs and eliminate unusual cases most likely due to a bug.
# + If (play, pause) pairs exceed XX(80-90?) percent of the clip length, add "pass": True to the clip.
# + Otherwise, find the last pause position of a clip and record it as "in" position of the clip.
# + If clips are all marked as "pass" in a playlist, elliminate the playlist from the user playlists.
playlists = copy.deepcopy(self.playlists)
play = {}
clip_max_dur = 10800 # = 3 hours; arbitrary max duration allowed for (pause time - play time) to detect outlier/bugs
# The current max time of a clip duration is 10379.383333377269 from "DDLaunch: Erik Verlinde, Gravity as an emergent force (1956)"
# A user could potentially spend more than 3 hours if they keep watching after the clip enters into the subsequent "scene"
for event in user.get('events', [])[::-1]:
if event["event"] == "play" and event["data"].get("type") == "video":
play = event
elif event["event"] == "pause" and play!={} and event["data"].get("type") == "video":
if "position" not in play["data"]:
play = {}
break
if play["data"].get("playlist") == event["data"].get("playlist"):
if event["data"]["position"] - play["data"]["position"] > 0 and event["data"]["position"] - play["data"]["position"] < clip_max_dur and event["data"].get("playlistPosition") == play["data"].get("playlistPosition") and event["data"].get("playlistPosition") is not None:
i = event["data"]["playlistPosition"]
for playlist in playlists:
if playlist["name"] == event["data"]["playlist"] and i < len(playlist["clips"]):
if play["data"]["position"] >= max(playlist["clips"][i]["in"] - 15, 0) and event["data"]["position"] <= playlist["clips"][i]["out"] + 15:
# This assumes the (play, pause) fits inside the clip's (in, out) segment with +/- 15secs buffer. There were newer edits of clip positions with 12 seconds difference.
# instances where this might not be the case: clip in/out may be largely edited (before after edit inconsistency); skip may trigger jump to a wrong clip (bug)
if "orig_in" not in playlist["clips"][i]:
cutoff_pos = (playlist["clips"][i]["out"]-playlist["clips"][i]["in"])*watch_cutoff + playlist["clips"][i]["in"]
else:
cutoff_pos = (playlist["clips"][i]["out"]-playlist["clips"][i]["orig_in"])*watch_cutoff + playlist["clips"][i]["orig_in"]
if event["data"]["position"] >= cutoff_pos:
playlist["clips"][i]["pass"] = True
else:
if "orig_in" not in playlist["clips"][i]:
# record the original "in" position to calculate cutoff position in the future
playlist["clips"][i]["orig_in"] = playlist["clips"][i]["in"]
# update "in" position of the clip in the playlist
playlist["clips"][i]["in"] = event["data"]["position"]
break
play = {}
for playlist in playlists.copy():
unwatched = [clip for clip in playlist["clips"] if not clip.get("pass")]
if not unwatched:
playlists.remove(playlist)
# If the number of playlists is reduced to 30, reset it to the original.
if len(playlists) < 30:
playlists = copy.deepcopy(self.playlists)
return(playlists)
def get_next(self, user, position):
# Update self_playlists to reflect user log history
playlists = self.update_user_playlists(user)
grid_events = {}
video_num = 16
for event in user.get('events', []):
if event.get('event') == "grid" and event.get('data').get('index') not in grid_events:
grid_events[event.get('data').get('index')] = event.get('data')
if len(grid_events) == video_num:
break
prev_grid_list = sorted([v for v in grid_events.values()], key=lambda k:k['index'])
vids_exclude = [e.get("playlist") for e in prev_grid_list]
rec = self.get_recommendations(playlists, user, vids_exclude)
return rec["videos"][position]
def update_state(self, data):
for key in data:
if key in self.state:
self.state[key].update(data[key])
else:
self.state[key] = data[key]
self.save_state()
return self.state
def save_state(self):
filename = os.path.join(self.path, 'state.json')
with open(filename, 'w') as f:
json.dump(self.state, f, indent=4, ensure_ascii=False, sort_keys=True)
def update(self):
# Get all storylines with tags
storylines = [{
'id': entity['id'],
'name': entity['name'],
'nodename': entity['nodename'],
'tags': [t.strip() for t in entity['tags']]
} for entity in self.pandora.find_entities({
'conditions': [
{'key': 'type', 'operator': '==', 'value': 'storylines'},
],
'operator': '&'
}, ['id', 'name', 'tags', 'nodename']) if entity.get('tags', []) and entity.get('nodename')]
# Get list of storyline names
names = list(set([storyline['name'] for storyline in storylines]))
# Get list of items to use in DD
items = [item['id'] for item in self.pandora.find({
'conditions': [
{'key': 'list', 'operator': '==', 'value': 'dau:DD'}
]
}, ['id'])]
# Get all clips annotated with storyline references
clips = [clip for clip in self.pandora.find_annotations({
'conditions': [
{'key': 'layer', 'operator': '==', 'value': 'storylines'}
],
'operator': '&'
}, ['id', 'in', 'out', 'value']) if clip['value'] in names and clip['id'].split('/')[0] in items]
# Get list of ids for videos with clips
ids = list(set([clip['id'].split('/')[0] for clip in clips]))
# Get and cache video data
filename = os.path.join(self.path, 'videos.json')
if os.path.exists(filename):
with open(filename) as f:
videos_ = json.loads(f.read())
ids_ = [video['id'] for video in videos_]
else:
videos_, ids_ = [], []
videos = sorted(videos_ + [
self.pandora.get(id, ['code', 'id', 'order', 'title'])
for id in ids if not id in ids_
], key=lambda video: int(video['order']))
with open(filename, 'w') as f:
f.write(json.dumps(videos, indent=4, sort_keys=True))
# Get video order
order = {video['id']: int(video['order']) for video in videos}
# Sort clips
clips = sorted(
clips,
key=lambda clip: (order[clip['id'].split('/')[0]], clip['in'])
)
# Get and cache playlists
self.playlists = [playlist for playlist in [{
'id': storyline['id'],
'name': storyline['nodename'].strip(),
'tags': storyline['tags'],
'clips': [{
'item': clip['id'].split('/')[0],
'id': '%s_%0.3f-%0.3f' % (clip['id'].split('/')[0], clip['in'], clip['out']),
'in': clip['in'],
'out': clip['out']
} for clip in clips if clip['value'] == storyline['name']]
} for storyline in storylines] if playlist['clips']]
with open(os.path.join(self.path, 'playlists.json'), 'w') as f:
f.write(json.dumps(self.playlists, indent=4, sort_keys=True))
self.update_keywords()
def update_keywords(self):
changed = False
if 'globalKeywords' not in self.state:
self.state['globalKeywords'] = {}
changed = True
existing_tags = set()
for playlist in self.playlists:
for tag in playlist.get('tags', []):
if not tag.isupper() and tag:
existing_tags.add(tag)
if not tag.isupper() and tag not in self.state['globalKeywords']:
self.state['globalKeywords'][tag] = {'value': 0}
changed = True
for tag in set(self.state['globalKeywords']) - existing_tags:
del self.state['globalKeywords'][tag]
changed = True
if changed:
self.save_state()
@run_async
def update_async(self):
self.update()
class Pandora:
# pan.do/ra API wrapper
def __init__(self, url, username, password):
self.api = ox.API(url)
self.api.signin(username=username, password=password)
def find(self, query, keys):
# print('FIND', query, keys)
return self.api.find({
'keys': keys,
'query': query,
'range': [0, 1000000]
})['data']['items']
def find_annotations(self, query, keys):
# print('FIND ANNOTATIONS', query, keys)
return self.api.findAnnotations({
'keys': keys,
'query': query,
'range': [0, 1000000]
})['data']['items']
def find_entities(self, query, keys):
# print('FIND ENTITIES', query, keys)
return self.api.findEntities({
'keys': keys,
'query': query,
'range': [0, 1000000]
})['data']['items']
def get(self, id, keys):
# print('GET', id, keys)
return self.api.get({
'id': id,
'keys': keys
})['data']
if __name__ == '__main__':
engine = Engine('json')
engine.update()